\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Controllability results for a class of one dimensional degenerate/singular parabolic equations

Abstract / Introduction Related Papers Cited by
  • We study the null controllability properties of some degenerate/singular parabolic equations in a bounded interval of R. For this reason we derive a new Carleman estimate whose proof is based on Hardy inequalities.
    Mathematics Subject Classification: Primary: 35K65, 93B07; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J.-M. Buchot and J.-P. Raymond, A linearized model for boundary layer equations, in Optimal Control of Complex Strcture (Oberwolfach, 2000), Internat. Ser. Numer. Math. 139.. Birkh..auser, Basel, (2002), 31-42.doi: 10.1007/978-3-0348-8148-7_3.

    [2]

    X. Cabré and Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier, C. R. Acad. Sci. Paris, 329 (1991), 973-978.doi: 10.1016/S0764-4442(00)88588-2.

    [3]

    F. Alabau- Boussouria, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.doi: 10.1007/s00028-006-0222-6.

    [4]

    P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.doi: 10.1137/04062062X.

    [5]

    P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 3 (2004), 607-635.doi: 10.3934/cpaa.2004.3.607.

    [6]

    P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation in inverse problems, Inverse Problems, 26 (2010), 105003.doi: 10.1088/0266-5611/26/10/105003.

    [7]

    T. Cazenave and A. Haraux, Introduction aux problemes d' évolution semi-lineaires, in "Mathe'matiques et Applications,'' Ellipses, Paris, 1990.

    [8]

    H. O. Fattorini and D. L. Russsell, Exact controability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 4 (1971), 272-292.doi: 10.1007/BF00250466.

    [9]

    H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974), 45-69.

    [10]

    M. Fotouhi and L. SalimiNull controllability of degenerate/singular parabolic equations, To appear in Journal of Dynamical Systems and Control.

    [11]

    A. V. Fursikov and O. Yu Imanuvilov, "Controllability of Evolution Equations," Lecture Notes Series 34, Seoul National University, Seoul, Korea, 1996.

    [12]

    P. Martinez and J. Vancostenoble, Carleman estimates for one - dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 161-204.doi: 10.1007/s00028-006-0214-6.

    [13]

    P. Martinez, J. P. Raymond and J. Vancostenoble, Regional null controllability for a linearized Crocco-type equation, SIAM J. Control Optim., 42 (2003), 709-728.doi: 10.1137/S0363012902403547.

    [14]

    G. R. North, L. Howard, D. Pollard and B. Wielicki, Variational formulation of Budyko-Sellers climate models, Journal of the Atmospheric Sciences, 36 (1979), 255-259.doi: 10.1175/1520-0469(1979)036<0255:VFOBSC>2.0.CO;2.

    [15]

    T. I. Seidman, Exact boundary control for some evolution equations, SIAM J. Control Optim., 16 (1978), 979-999.doi: 10.1137/0316066.

    [16]

    N. Shimakura, "Partial Differential Operatots of Elliptic Type," Translations of Mathematical Monographs. 99, American Mathematical Society, Providence, RI, 1992.

    [17]

    J. Tort and J. VancostenobleDetermination of the insolation function in the nonlinear Sellers climate model, in Annales, dx.doi.org/10.1016/j.anihpc.2012.03.003. doi: 10.1016/j.anihpc.2012.03.003.

    [18]

    J. Vancostenoble, Improved Hardy-Poincare inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst.Ser. S, 4 (2011), 761-790.doi: 10.3934/dcdss.2011.4.761.

    [19]

    J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations, Communications in Partial Differential Equations, 36 (2011), 1287-1317.doi: 10.1080/03605302.2011.587491.

    [20]

    J. Vancostenoble and E. Zuazua, Null controllability for the heat equation with singular inverse-square potentials, Journal of Functional Analysis, 254 (2008), 1864-1902.doi: 10.1016/J.Jfa.2007.12.015.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return