Citation: |
[1] |
J.-M. Buchot and J.-P. Raymond, A linearized model for boundary layer equations, in Optimal Control of Complex Strcture (Oberwolfach, 2000), Internat. Ser. Numer. Math. 139.. Birkh..auser, Basel, (2002), 31-42.doi: 10.1007/978-3-0348-8148-7_3. |
[2] |
X. Cabré and Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier, C. R. Acad. Sci. Paris, 329 (1991), 973-978.doi: 10.1016/S0764-4442(00)88588-2. |
[3] |
F. Alabau- Boussouria, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.doi: 10.1007/s00028-006-0222-6. |
[4] |
P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.doi: 10.1137/04062062X. |
[5] |
P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 3 (2004), 607-635.doi: 10.3934/cpaa.2004.3.607. |
[6] |
P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation in inverse problems, Inverse Problems, 26 (2010), 105003.doi: 10.1088/0266-5611/26/10/105003. |
[7] |
T. Cazenave and A. Haraux, Introduction aux problemes d' évolution semi-lineaires, in "Mathe'matiques et Applications,'' Ellipses, Paris, 1990. |
[8] |
H. O. Fattorini and D. L. Russsell, Exact controability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 4 (1971), 272-292.doi: 10.1007/BF00250466. |
[9] |
H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974), 45-69. |
[10] |
M. Fotouhi and L. Salimi, Null controllability of degenerate/singular parabolic equations, To appear in Journal of Dynamical Systems and Control. |
[11] |
A. V. Fursikov and O. Yu Imanuvilov, "Controllability of Evolution Equations," Lecture Notes Series 34, Seoul National University, Seoul, Korea, 1996. |
[12] |
P. Martinez and J. Vancostenoble, Carleman estimates for one - dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 161-204.doi: 10.1007/s00028-006-0214-6. |
[13] |
P. Martinez, J. P. Raymond and J. Vancostenoble, Regional null controllability for a linearized Crocco-type equation, SIAM J. Control Optim., 42 (2003), 709-728.doi: 10.1137/S0363012902403547. |
[14] |
G. R. North, L. Howard, D. Pollard and B. Wielicki, Variational formulation of Budyko-Sellers climate models, Journal of the Atmospheric Sciences, 36 (1979), 255-259.doi: 10.1175/1520-0469(1979)036<0255:VFOBSC>2.0.CO;2. |
[15] |
T. I. Seidman, Exact boundary control for some evolution equations, SIAM J. Control Optim., 16 (1978), 979-999.doi: 10.1137/0316066. |
[16] |
N. Shimakura, "Partial Differential Operatots of Elliptic Type," Translations of Mathematical Monographs. 99, American Mathematical Society, Providence, RI, 1992. |
[17] |
J. Tort and J. Vancostenoble, Determination of the insolation function in the nonlinear Sellers climate model, in Annales, dx.doi.org/10.1016/j.anihpc.2012.03.003. doi: 10.1016/j.anihpc.2012.03.003. |
[18] |
J. Vancostenoble, Improved Hardy-Poincare inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst.Ser. S, 4 (2011), 761-790.doi: 10.3934/dcdss.2011.4.761. |
[19] |
J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations, Communications in Partial Differential Equations, 36 (2011), 1287-1317.doi: 10.1080/03605302.2011.587491. |
[20] |
J. Vancostenoble and E. Zuazua, Null controllability for the heat equation with singular inverse-square potentials, Journal of Functional Analysis, 254 (2008), 1864-1902.doi: 10.1016/J.Jfa.2007.12.015. |