Citation: |
[1] |
A. Acker, On the existence of convex classical solutions for multilayer free boundary problems with general nonlinear joining conditions, Trans. Amer. Math. Soc., 350 (1998), 2981-3020.doi: 10.1090/S0002-9947-98-01943-6. |
[2] |
F. J. Jr. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc., 4 (1976).doi: 10.1090/S0002-9904-1975-13681-0. |
[3] |
O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl., 76 (1997), 265-288.doi: 10.1016/S0021-7824(97)89952-7. |
[4] |
L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Mathematical Monographs. Oxford University Press, New York, 2000. |
[5] |
R. Argiolas, A two-phase variational problem with curvature, Matematiche (Catania), 58 (2003), 131-148. |
[6] |
I. Athanasopoulos, L. A. Caffarelli, C. Kenig and S. Salsa, An area-Dirichlet integral minimization problem, Comm. Pure Appl. Math., 54 (2001), 479-499. |
[7] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. |
[8] |
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer Verlag, Berlin, 2001. |
[9] |
A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the $p$-Laplace operator. I. The exterior convex case, J. Reine Angew. Math., 521 (2000), 85-97.doi: 10.1515/crll.2000.031. |
[10] |
A. Henrot and H. Shahgholian, The one phase free boundary problem for the $p$-Laplacian with non-constant Bernoulli boundary condition, Trans. Amer. Math. Soc., 354 (2002), 2399-2416.doi: 10.1090/S0002-9947-02-02892-1. |
[11] |
D. Kinderlehrer, L. Nirenberg and J. Spruck, Regularity in elliptic free boundary problems I, J. Analyse Math., 34 (1978), 86-119.doi: 10.1007/BF02790009. |
[12] |
B. Kirchheim and J. Kristensen, Differentiability of convex envelopes, C. R. Acad. Sci. Paris S閞. I Math., 333 (2001), 725-728.doi: 10.1016/S0764-4442(01)02117-6. |
[13] |
P. Laurence and E. Stredulinsky, Existence of regular solutions with convex levels for semilinear elliptic equations with nonmonotone $L^1$ nonlinearities. Part I, Indiana Univ. Math. J., 39 (1990), 1081-1114.doi: 10.1512/iumj.1990.39.39051. |
[14] |
J. L. Lewis, Capacitary functions in convex rings, Arch. Rational Mech. Anal., 66 (1977), 201-224.doi: 10.1007/BF00250671. |
[15] |
G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.doi: 10.1016/0362-546X(88)90053-3. |
[16] |
F. Mazzone, A single phase variational problem involving the area of level surfaces, Comm. Part. Diff. Eq., 28 (2003), 991-1004.doi: 10.1081/PDE-120021183. |
[17] |
I. Tamanini, Regularity results for almost minimal oriented hypersurface in $R^n$, Quaderni del Dipartimento di Matematica, Universitá di Lecce 1, (1994). |