May  2013, 12(3): 1469-1486. doi: 10.3934/cpaa.2013.12.1469

Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$

1. 

Department of mathematics, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, 306,14 Plzeň, Czech Republic

Received  April 2012 Revised  May 2012 Published  September 2012

We are concerned with the Dirichlet and Neumann eigenvalue problem for the ordinary quasilinear fourth-order ($p$-biharmonic) equation \begin{eqnarray} (|u''|^{p-2}u'')''=\lambda|u|^{p-2}u, in \quad [0,1], \quad p>1. \end{eqnarray} It is known that the eigenvalues of the Dirichlet and Neumann $p$-biharmonic problem are positive and nonnegative, respectively, isolated, and form an increasing unbounded sequence. We prove that the eigenvalues depend continuously on $p$, and that they interlace with the eigenvalues of the Navier $p$-biharmonic problem.
Citation: Jiří Benedikt. Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1469-1486. doi: 10.3934/cpaa.2013.12.1469
References:
[1]

J. Benedikt, Uniqueness theorem for $p$-biharmonic equations,, Electron. J. Differential Equations, 53 (2002), 1. Google Scholar

[2]

J. Benedikt, Uniqueness theorem for quasilinear $2n$th-order equations,, J. Math. Anal. Appl., 293 (2004), 589. Google Scholar

[3]

J. Benedikt, On simplicity of spectra of $p$-biharmonic equations,, Nonlinear Anal., 58 (2004), 835. Google Scholar

[4]

J. Benedikt, On the discreteness of the spectra of the Dirichlet and Neumann $p$-biharmonic problem,, Abstr. Appl. Anal., 2004 (2004), 777. Google Scholar

[5]

J. Benedikt, Global bifurcation result for Dirichlet and Neumann $p$-biharmonic problem,, NoDEA, 14 (2007), 541. Google Scholar

[6]

M.\,A. Del Pino, M. Elgueta and R.\,F. Man\'asevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2} u')'+f(t,u)=0, u(0)=u(T)=0, p>1$, , J. Differential Equations, 80 (1989), 1. Google Scholar

[7]

P. Drábek, Ranges of $a$-homogeneous operators and their perturbations,, Časopis P\vest. Mat., 105 (1980), 167. Google Scholar

[8]

P. Drábek and M. Ôtani, Global bifurcation result for the $p$-biharmonic operator,, Electron. J. Differential Equations, 48 (2001), 1. Google Scholar

[9]

A. El Khalil, S. Kellati and A. Touzani, On the spectrum of the $p$-biharmonic operator,, in, 09 (2002), 161. Google Scholar

[10]

A. Kratochvíl and J. Nečas, The discreteness of the spectrum of a nonlinear Sturm-Liouville equation of fourth order,, Comment. Math. Univ. Carolinæ, 12 (1971), 639. Google Scholar

[11]

A. Pinkus, $n$-widths of Sobolev spaces in $L^p$,, Constr. Approx., 1 (1985), 15. Google Scholar

show all references

References:
[1]

J. Benedikt, Uniqueness theorem for $p$-biharmonic equations,, Electron. J. Differential Equations, 53 (2002), 1. Google Scholar

[2]

J. Benedikt, Uniqueness theorem for quasilinear $2n$th-order equations,, J. Math. Anal. Appl., 293 (2004), 589. Google Scholar

[3]

J. Benedikt, On simplicity of spectra of $p$-biharmonic equations,, Nonlinear Anal., 58 (2004), 835. Google Scholar

[4]

J. Benedikt, On the discreteness of the spectra of the Dirichlet and Neumann $p$-biharmonic problem,, Abstr. Appl. Anal., 2004 (2004), 777. Google Scholar

[5]

J. Benedikt, Global bifurcation result for Dirichlet and Neumann $p$-biharmonic problem,, NoDEA, 14 (2007), 541. Google Scholar

[6]

M.\,A. Del Pino, M. Elgueta and R.\,F. Man\'asevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2} u')'+f(t,u)=0, u(0)=u(T)=0, p>1$, , J. Differential Equations, 80 (1989), 1. Google Scholar

[7]

P. Drábek, Ranges of $a$-homogeneous operators and their perturbations,, Časopis P\vest. Mat., 105 (1980), 167. Google Scholar

[8]

P. Drábek and M. Ôtani, Global bifurcation result for the $p$-biharmonic operator,, Electron. J. Differential Equations, 48 (2001), 1. Google Scholar

[9]

A. El Khalil, S. Kellati and A. Touzani, On the spectrum of the $p$-biharmonic operator,, in, 09 (2002), 161. Google Scholar

[10]

A. Kratochvíl and J. Nečas, The discreteness of the spectrum of a nonlinear Sturm-Liouville equation of fourth order,, Comment. Math. Univ. Carolinæ, 12 (1971), 639. Google Scholar

[11]

A. Pinkus, $n$-widths of Sobolev spaces in $L^p$,, Constr. Approx., 1 (1985), 15. Google Scholar

[1]

Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741

[2]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[3]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems & Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

[4]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[5]

Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure & Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425

[6]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[7]

Paulo Cesar Carrião, R. Demarque, Olímpio H. Miyagaki. Nonlinear Biharmonic Problems with Singular Potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2141-2154. doi: 10.3934/cpaa.2014.13.2141

[8]

Filippo Gazzola. On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3583-3597. doi: 10.3934/dcds.2013.33.3583

[9]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[10]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[11]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[12]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems & Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[13]

Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235

[14]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[15]

Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure & Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241

[16]

Julian Braun, Bernd Schmidt. On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks & Heterogeneous Media, 2013, 8 (4) : 879-912. doi: 10.3934/nhm.2013.8.879

[17]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[18]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[19]

Fabio Cipriani, Gabriele Grillo. On the $l^p$ -agmon's theory. Conference Publications, 1998, 1998 (Special) : 167-176. doi: 10.3934/proc.1998.1998.167

[20]

John R. Graef, Shapour Heidarkhani, Lingju Kong. Multiple solutions for a class of $(p_1, \ldots, p_n)$-biharmonic systems. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1393-1406. doi: 10.3934/cpaa.2013.12.1393

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]