• Previous Article
    On qualitative analysis for a two competing fish species model with a combined non-selective harvesting effort in the presence of toxicity
  • CPAA Home
  • This Issue
  • Next Article
    Tug-of-war games and the infinity Laplacian with spatial dependence
2013, 12(5): 1943-1957. doi: 10.3934/cpaa.2013.12.1943

Elliptic equations with cylindrical potential and multiple critical exponents

1. 

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China

2. 

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, PO Box 71010, Wuhan 430071E01103

Received  November 2011 Revised  August 2012 Published  January 2013

In this paper, we deal with the following problem: \begin{eqnarray*} -\Delta u-\lambda |y|^{-2}u=|y|^{-s}u^{2^{*}(s)-1}+u^{2^{*}-1}\ \ \ in \ \ R^N , y\neq 0\\ u\geq 0 \end{eqnarray*} where $u(x)=u(y,z): R^m\times R^{N-m}\longrightarrow R$, $N\geq 4$, $2 < m < N$, $\lambda < (\frac{m-2}{2})^2$ and $0 < s < 2$, $2^*(s)=\frac{2(N-s)}{N-2}$, $2^*=\frac{2N}{N-2}$. Using the Variational method, we proved the existence of a ground state solution for the case $0 < \lambda < (\frac{m-2}{2})^2$ and the existence of a cylindrical weak solution under the case $\lambda<0$.
Citation: Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943
References:
[1]

J. Bellazzini and C. Bonanno, Nonlinear Schrödinger equations with strongly singular potentials,, Proceedings of the Royal Society of Edinburgh, 140A (2010), 707. doi: 10.1017/S0308210509001401.

[2]

M. Badiale, V. Bergio and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations,, J. Eur. Math. Soc., 9 (2007), 355.

[3]

M. Badiale, M. Guida and S. Rolando, Elliptic equations with decaying cylindrical potentials and power-type nonlinearities,, Adv. Diff. Equ., 12 (2007), 1321. doi: 10.1007/s00009-005-0055-5.

[4]

M. Badiale and S. Rolando, Nonlinear elliptic equations with subhomogeneous potentials,, Nonlinear Analysis, 72 (2010), 602. doi: 10.1016/j.na.2009.06.111.

[5]

M. Badiale and G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics,, Arch. Ration. Mech. Anal., 163 (2002), 252. doi: 10.1007/s002050200201.

[6]

M. Bhakta and K. Sandeep, Hardy-Sobolev-Maz'ya type equations in bounded domains,, J. Differential Equations, 247 (2009), 119. doi: 10.1016/j.jde.2008.12.011.

[7]

H. Brezis and E. Lieb, A relation between pointwise convergence of functionals and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486. doi: 10.2307/2044999.

[8]

D. Castorina, I. Fabbri, G. Mancini and K. Sandeep, Hardy-Sobolev extremals, hyperbolic symmetry and scalar curvature equations,, J. Differential Equations, 246 (2009), 1187. doi: 10.1016/j.jde.2008.09.006.

[9]

D. M. Cao and P. G. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, J. Differential Equations, 224 (2006), 332. doi: 10.1016/j.jde.2005.07.010.

[10]

D. M. Cao and Y. Y. Li, Results on positive solutions of elliptic equations with a critical Hardy-Sobolev operator,, Methods and Applications of Analysis, 15 (2008), 081. doi: 10.1.1.140.417.

[11]

L. D'Ambrosio, Hardy type inequalities related to degenerate elliptic differential operators,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 4 (2005), 451.

[12]

R. Filippucci, P. Pucci and F. Robert, On a p-Laplace equation with multiple critical nonlinearities,, J. Math. Pures Appl., 91 (2009), 156. doi: 10.1016/j.matpur.2008.09.008.

[13]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms,, Trans. Amer. Math. Soc., 356 (2004), 2149. doi: 10.1090/S0002-9947-03-03395-6.

[14]

N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities,, Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire, 21 (2004), 767. doi: 10.1016/j.anihpc.2003.07.002.

[15]

Y. Y. Li and C. S. Lin, A nonlinear Elliptic PDE with two Sobolev-Hardy critical exponents,, Arch. Rational Mech. Anal., 203 (2012), 943. doi: 10.1007/s00205-011-0467-2.

[16]

G. Mancini, I. Fabbri and K. Sandeep, Classification of solutions of a critical Hardy-Sobolev operator,, J. Differential Equations, 224 (2006), 258. doi: 10.1016/j.jde.2005.07.001.

[17]

G. Mancini and K. Sandeep, On a semilinear elliptic equation in $\Bbb H^n$,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2008), 635.

[18]

R. Musina, Ground state solutions of a critical problem involving cylindrical weights,, Nonlinear Anal., 68 (2008), 3972. doi: 10.1016/j.na.2007.04.034.

[19]

R. S. Palais, The principle of symmetric criticality,, Commun. Math. Phys., 69 (1979), 19. doi: 10.1007/BF01941322.

[20]

J. B. Su and Z. Q. Wang, Sobolev type embedding and quasilinear elliptic equations with radial potentials,, J. Differential Equa., 250 (2011), 223. doi: 10.1016/j.jde.2010.08.025.

[21]

J. B. Su, Z. Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials,, J. Differential Equa., 238 (2007), 201. doi: 10.1016/j.jde.2007.03.018.

[22]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353. doi: 10.1007/BF02418013.

[23]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Differential Equations, 2 (1996), 241.

[24]

A. Tertikas and K. Tintarev, On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality,, Ann. Mat. Pura e Appl., 186 (2007), 645. doi: 10.1007/s10231-006-0024-z.

[25]

S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space,, Ann. Inst. Henry Poincar\'e-Analyse Nonlin\'eaire, 12 (1995), 319.

[26]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Third edition, (2000).

show all references

References:
[1]

J. Bellazzini and C. Bonanno, Nonlinear Schrödinger equations with strongly singular potentials,, Proceedings of the Royal Society of Edinburgh, 140A (2010), 707. doi: 10.1017/S0308210509001401.

[2]

M. Badiale, V. Bergio and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations,, J. Eur. Math. Soc., 9 (2007), 355.

[3]

M. Badiale, M. Guida and S. Rolando, Elliptic equations with decaying cylindrical potentials and power-type nonlinearities,, Adv. Diff. Equ., 12 (2007), 1321. doi: 10.1007/s00009-005-0055-5.

[4]

M. Badiale and S. Rolando, Nonlinear elliptic equations with subhomogeneous potentials,, Nonlinear Analysis, 72 (2010), 602. doi: 10.1016/j.na.2009.06.111.

[5]

M. Badiale and G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics,, Arch. Ration. Mech. Anal., 163 (2002), 252. doi: 10.1007/s002050200201.

[6]

M. Bhakta and K. Sandeep, Hardy-Sobolev-Maz'ya type equations in bounded domains,, J. Differential Equations, 247 (2009), 119. doi: 10.1016/j.jde.2008.12.011.

[7]

H. Brezis and E. Lieb, A relation between pointwise convergence of functionals and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486. doi: 10.2307/2044999.

[8]

D. Castorina, I. Fabbri, G. Mancini and K. Sandeep, Hardy-Sobolev extremals, hyperbolic symmetry and scalar curvature equations,, J. Differential Equations, 246 (2009), 1187. doi: 10.1016/j.jde.2008.09.006.

[9]

D. M. Cao and P. G. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, J. Differential Equations, 224 (2006), 332. doi: 10.1016/j.jde.2005.07.010.

[10]

D. M. Cao and Y. Y. Li, Results on positive solutions of elliptic equations with a critical Hardy-Sobolev operator,, Methods and Applications of Analysis, 15 (2008), 081. doi: 10.1.1.140.417.

[11]

L. D'Ambrosio, Hardy type inequalities related to degenerate elliptic differential operators,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 4 (2005), 451.

[12]

R. Filippucci, P. Pucci and F. Robert, On a p-Laplace equation with multiple critical nonlinearities,, J. Math. Pures Appl., 91 (2009), 156. doi: 10.1016/j.matpur.2008.09.008.

[13]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms,, Trans. Amer. Math. Soc., 356 (2004), 2149. doi: 10.1090/S0002-9947-03-03395-6.

[14]

N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities,, Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire, 21 (2004), 767. doi: 10.1016/j.anihpc.2003.07.002.

[15]

Y. Y. Li and C. S. Lin, A nonlinear Elliptic PDE with two Sobolev-Hardy critical exponents,, Arch. Rational Mech. Anal., 203 (2012), 943. doi: 10.1007/s00205-011-0467-2.

[16]

G. Mancini, I. Fabbri and K. Sandeep, Classification of solutions of a critical Hardy-Sobolev operator,, J. Differential Equations, 224 (2006), 258. doi: 10.1016/j.jde.2005.07.001.

[17]

G. Mancini and K. Sandeep, On a semilinear elliptic equation in $\Bbb H^n$,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2008), 635.

[18]

R. Musina, Ground state solutions of a critical problem involving cylindrical weights,, Nonlinear Anal., 68 (2008), 3972. doi: 10.1016/j.na.2007.04.034.

[19]

R. S. Palais, The principle of symmetric criticality,, Commun. Math. Phys., 69 (1979), 19. doi: 10.1007/BF01941322.

[20]

J. B. Su and Z. Q. Wang, Sobolev type embedding and quasilinear elliptic equations with radial potentials,, J. Differential Equa., 250 (2011), 223. doi: 10.1016/j.jde.2010.08.025.

[21]

J. B. Su, Z. Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials,, J. Differential Equa., 238 (2007), 201. doi: 10.1016/j.jde.2007.03.018.

[22]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353. doi: 10.1007/BF02418013.

[23]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Differential Equations, 2 (1996), 241.

[24]

A. Tertikas and K. Tintarev, On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality,, Ann. Mat. Pura e Appl., 186 (2007), 645. doi: 10.1007/s10231-006-0024-z.

[25]

S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space,, Ann. Inst. Henry Poincar\'e-Analyse Nonlin\'eaire, 12 (1995), 319.

[26]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Third edition, (2000).

[1]

Dongsheng Kang. Quasilinear systems involving multiple critical exponents and potentials. Communications on Pure & Applied Analysis, 2013, 12 (2) : 695-710. doi: 10.3934/cpaa.2013.12.695

[2]

Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383

[3]

M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure & Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233

[4]

Dongsheng Kang, Fen Yang. Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4247-4263. doi: 10.3934/dcds.2012.32.4247

[5]

F. R. Pereira. Multiple solutions for a class of Ambrosetti-Prodi type problems for systems involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2008, 7 (2) : 355-372. doi: 10.3934/cpaa.2008.7.355

[6]

Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315

[7]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[8]

Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259

[9]

Alexandre Nolasco de Carvalho, Marcelo J. D. Nascimento. Singularly non-autonomous semilinear parabolic problems with critical exponents. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 449-471. doi: 10.3934/dcdss.2009.2.449

[10]

Shengbing Deng, Fethi Mahmoudi, Monica Musso. Bubbling on boundary submanifolds for a semilinear Neumann problem near high critical exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3035-3076. doi: 10.3934/dcds.2016.36.3035

[11]

Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461

[12]

Filippo Gazzola. Critical exponents which relate embedding inequalities with quasilinear elliptic problems. Conference Publications, 2003, 2003 (Special) : 327-335. doi: 10.3934/proc.2003.2003.327

[13]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[14]

Zhilei Liang. On the critical exponents for porous medium equation with a localized reaction in high dimensions. Communications on Pure & Applied Analysis, 2012, 11 (2) : 649-658. doi: 10.3934/cpaa.2012.11.649

[15]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[16]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[17]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[18]

Monica Musso, Donato Passaseo. Multiple solutions of Neumann elliptic problems with critical nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 301-320. doi: 10.3934/dcds.1999.5.301

[19]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure & Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[20]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]