2013, 12(5): 2083-2090. doi: 10.3934/cpaa.2013.12.2083

The sign of the wave speed for the Lotka-Volterra competition-diffusion system

1. 

Department of Mathematics, Tamkang University, 151, Ying-Chuan Road, Tamsui, Taipei County 25137

2. 

Department of Mathematics, National Taiwan Normal University, 88, S-4, Ting Chou Road, Taipei 11677

Received  March 2012 Revised  September 2012 Published  January 2013

In this paper, we study the traveling front solutions of the Lotka-Volterra competition-diffusion system with bistable nonlinearity. It is well-known that the wave speed of traveling front is unique. Although little is known for the sign of the wave speed. In this paper, we first study the standing wave which gives some criteria when the speed is zero. Then, by the monotone dependence on parameters, we obtain some criteria about the sign of the wave speed under some parameter restrictions.
Citation: Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083
References:
[1]

C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitve reaction-diffusion model,, {Indiana Univ. Math. J.}, 33 (1984), 319.

[2]

R. A. Gardner, Existence and stability of traveling wave solutions of competition models: A degree theoretic approach,, {J. Differential Equations}, 44 (1982), 343. doi: 10.1016/0022-0396(82)90001-8.

[3]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, {J. Dyn. Diff. Equat.}, 23 (2011), 353. doi: 10.1007/s10884-011-9214-5.

[4]

Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model,, {Bulletin of Math. Biology}, 60 (1998), 435. doi: 10.1006/bulm.1997.0008.

[5]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations,, {IAM J. Math. Anal.}, 26 (1995), 340. doi: 10.1137/S0036141093244556.

[6]

Y. Kan-on, Existence of standing waves for competition-diffusion equations,, {Japan J. Indust. Appl. Math.}, 13 (1996), 117. doi: 10.1007/BF03167302.

[7]

Y. Kan-on, Stability of monotone travelling waves for competition-diffusion equations,, {Japan J. Indust. Appl. Math.}, 13 (1996), 343. doi: 10.1007/BF03167252.

[8]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, {Nonlinear Analysis, 28 (1997), 145. doi: 10.1016/0362-546X(95)00142-I.

[9]

Y. Kan-on and E. Yanagida, Existence of nonconstant stable equilibria in competition-diffusion equations,, {Hiroshima Math. J.}, 23 (1993), 193.

[10]

M. Mimura and P. C. Fife, A 3-component system of competition and diffusion,, {Hiroshima Math. J.}, 16 (1986), 189.

[11]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,, {Hiroshima Math. J.}, 30 (2000), 257.

[12]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion,, {Arch. Rational Mech. Anal.}, 73 (1980), 69. doi: 10.1007/BF00283257.

show all references

References:
[1]

C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitve reaction-diffusion model,, {Indiana Univ. Math. J.}, 33 (1984), 319.

[2]

R. A. Gardner, Existence and stability of traveling wave solutions of competition models: A degree theoretic approach,, {J. Differential Equations}, 44 (1982), 343. doi: 10.1016/0022-0396(82)90001-8.

[3]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, {J. Dyn. Diff. Equat.}, 23 (2011), 353. doi: 10.1007/s10884-011-9214-5.

[4]

Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model,, {Bulletin of Math. Biology}, 60 (1998), 435. doi: 10.1006/bulm.1997.0008.

[5]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations,, {IAM J. Math. Anal.}, 26 (1995), 340. doi: 10.1137/S0036141093244556.

[6]

Y. Kan-on, Existence of standing waves for competition-diffusion equations,, {Japan J. Indust. Appl. Math.}, 13 (1996), 117. doi: 10.1007/BF03167302.

[7]

Y. Kan-on, Stability of monotone travelling waves for competition-diffusion equations,, {Japan J. Indust. Appl. Math.}, 13 (1996), 343. doi: 10.1007/BF03167252.

[8]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, {Nonlinear Analysis, 28 (1997), 145. doi: 10.1016/0362-546X(95)00142-I.

[9]

Y. Kan-on and E. Yanagida, Existence of nonconstant stable equilibria in competition-diffusion equations,, {Hiroshima Math. J.}, 23 (1993), 193.

[10]

M. Mimura and P. C. Fife, A 3-component system of competition and diffusion,, {Hiroshima Math. J.}, 16 (1986), 189.

[11]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,, {Hiroshima Math. J.}, 30 (2000), 257.

[12]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion,, {Arch. Rational Mech. Anal.}, 73 (1980), 69. doi: 10.1007/BF00283257.

[1]

Daozhou Gao, Xing Liang. A competition-diffusion system with a refuge. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 435-454. doi: 10.3934/dcdsb.2007.8.435

[2]

Wei-Ming Ni, Masaharu Taniguchi. Traveling fronts of pyramidal shapes in competition-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 379-395. doi: 10.3934/nhm.2013.8.379

[3]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[4]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[5]

Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427

[6]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[7]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[8]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[9]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[10]

Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3145-3165. doi: 10.3934/dcdsb.2017168

[11]

Bingtuan Li. Some remarks on traveling wave solutions in competition models. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 389-399. doi: 10.3934/dcdsb.2009.12.389

[12]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[13]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[14]

Lia Bronsard, Seong-A Shim. Long-time behavior for competition-diffusion systems via viscosity comparison. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 561-581. doi: 10.3934/dcds.2005.13.561

[15]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[16]

Danielle Hilhorst, Masato Iida, Masayasu Mimura, Hirokazu Ninomiya. Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 233-244. doi: 10.3934/dcds.2008.21.233

[17]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[18]

Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119

[19]

Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417

[20]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]