September  2013, 12(5): 2213-2227. doi: 10.3934/cpaa.2013.12.2213

Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation

1. 

Laboratoire de Mathématiques Raphaël Salem, UMR CNRS 6085, Université de Rouen, Avenue de l'université, BP12, 76801 Saint Étienne du Rouvray cedex, France, France

2. 

Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS - Université de Rouen, Avenue de l'Université, BP.12, 76801 Saint-Étienne du Rouvray

Received  August 2011 Revised  December 2012 Published  January 2013

We give existence and uniqueness results of the weak-renormalized solution for a class of nonlinear Boussinesq's systems. The main tools rely on regularity results for the Navier-Stokes equations with precise estimates on the solution with respect to the data in dimension $2$ and on the techniques involved for renormalized solutions of parabolic problems.
Citation: Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213
References:
[1]

A. Attaoui, D. Blanchard and O. Guibé, Weak-renormalized solution for a nonlinear Boussinesq system,, Differential Integral Equations, 22 (2009), 465.   Google Scholar

[2]

C. Bernardi, B. Métivet and B. Pernaud-Thomas, Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par élément finis,, RAIRO Mod\'el. Math. Anal. Num\'er, 29 (1995), 871.   Google Scholar

[3]

D. Blanchard, A few result on coupled systems of thermomechanics,, In, 23 (2009), 145.   Google Scholar

[4]

D. Blanchard and F. Murat, Renormalized solutions of nonlinear parabolic problems with $L_1$ data: existence and uniqueness,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137.  doi: 10.1017/S0308210500026986.  Google Scholar

[5]

D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems,, J. Differential Equations, 177 (2001), 331.  doi: 10.1006/jdeq.2000.4013.  Google Scholar

[6]

D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection,, J. Differential Equations, 210 (2005), 383.  doi: 10.1016/j.jde.2004.06.012.  Google Scholar

[7]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.  doi: 10.1006/jfan.1996.3040.  Google Scholar

[8]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data,, J. Funct. Anal., 87 (1989), 149.  doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[9]

J. Boussinesq, "Thèorie analytique de la chaleur," volume 2., Gauthier-Villars, (1903).   Google Scholar

[10]

N. Bruyère, "Comportement asymptotique de problèmes posés dans des cylindres. Problèmes d'unicité pour les systèmes de Boussinesq,", PhD thesis, (2007).   Google Scholar

[11]

N. Bruyère, Existence et unicité de la solutions faible-renormalisée pour un système non linéaire de Boussinesq,, C. R. Math. Acad. Sci. Paris, 346 (2008), 521.  doi: 10.1016/j.crma.2008.03.005.  Google Scholar

[12]

B. Climent and E. Fernández-Cara, Some existence and uniqueness results for a time-dependent coupled problem of the Navier-Stokes kind,, Math. Models Methods Appl. Sci., 8 (1998), 603.  doi: 10.1142/S0218202598000275.  Google Scholar

[13]

J. I. Díaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion,, Topol. Methods Nonlinear Anal., 11 (1998), 59.   Google Scholar

[14]

C. Gerhardt, $L^p$-estimates for solutions to the instationary Navier-Stokes equations in dimension two,, Pacific J. Math., 79 (1978), 375.   Google Scholar

[15]

P-L Lions, "Mathematical Topics in Fluid Mechanics," Vol. 1, volume 3 of Oxford Lecture Series in Mathematics and its Applications,, The Clarendon Press Oxford University Press, (1996).   Google Scholar

[16]

L. Nirenberg, An extended interpolation inequality,, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 733.   Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[18]

R. Temam, "Navier-Stokes Equations,", AMS Chelsea Publishing, (2001).   Google Scholar

[19]

R. Temam and A. Miranville, "Mathematical Modeling in Continuum Mechanics,", Cambridge University Press, (2005).  doi: 10.1017/CBO9780511755422.  Google Scholar

show all references

References:
[1]

A. Attaoui, D. Blanchard and O. Guibé, Weak-renormalized solution for a nonlinear Boussinesq system,, Differential Integral Equations, 22 (2009), 465.   Google Scholar

[2]

C. Bernardi, B. Métivet and B. Pernaud-Thomas, Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par élément finis,, RAIRO Mod\'el. Math. Anal. Num\'er, 29 (1995), 871.   Google Scholar

[3]

D. Blanchard, A few result on coupled systems of thermomechanics,, In, 23 (2009), 145.   Google Scholar

[4]

D. Blanchard and F. Murat, Renormalized solutions of nonlinear parabolic problems with $L_1$ data: existence and uniqueness,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137.  doi: 10.1017/S0308210500026986.  Google Scholar

[5]

D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems,, J. Differential Equations, 177 (2001), 331.  doi: 10.1006/jdeq.2000.4013.  Google Scholar

[6]

D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection,, J. Differential Equations, 210 (2005), 383.  doi: 10.1016/j.jde.2004.06.012.  Google Scholar

[7]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.  doi: 10.1006/jfan.1996.3040.  Google Scholar

[8]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data,, J. Funct. Anal., 87 (1989), 149.  doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[9]

J. Boussinesq, "Thèorie analytique de la chaleur," volume 2., Gauthier-Villars, (1903).   Google Scholar

[10]

N. Bruyère, "Comportement asymptotique de problèmes posés dans des cylindres. Problèmes d'unicité pour les systèmes de Boussinesq,", PhD thesis, (2007).   Google Scholar

[11]

N. Bruyère, Existence et unicité de la solutions faible-renormalisée pour un système non linéaire de Boussinesq,, C. R. Math. Acad. Sci. Paris, 346 (2008), 521.  doi: 10.1016/j.crma.2008.03.005.  Google Scholar

[12]

B. Climent and E. Fernández-Cara, Some existence and uniqueness results for a time-dependent coupled problem of the Navier-Stokes kind,, Math. Models Methods Appl. Sci., 8 (1998), 603.  doi: 10.1142/S0218202598000275.  Google Scholar

[13]

J. I. Díaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion,, Topol. Methods Nonlinear Anal., 11 (1998), 59.   Google Scholar

[14]

C. Gerhardt, $L^p$-estimates for solutions to the instationary Navier-Stokes equations in dimension two,, Pacific J. Math., 79 (1978), 375.   Google Scholar

[15]

P-L Lions, "Mathematical Topics in Fluid Mechanics," Vol. 1, volume 3 of Oxford Lecture Series in Mathematics and its Applications,, The Clarendon Press Oxford University Press, (1996).   Google Scholar

[16]

L. Nirenberg, An extended interpolation inequality,, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 733.   Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[18]

R. Temam, "Navier-Stokes Equations,", AMS Chelsea Publishing, (2001).   Google Scholar

[19]

R. Temam and A. Miranville, "Mathematical Modeling in Continuum Mechanics,", Cambridge University Press, (2005).  doi: 10.1017/CBO9780511755422.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[6]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[17]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[18]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (9)

[Back to Top]