2013, 12(5): 2213-2227. doi: 10.3934/cpaa.2013.12.2213

Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation

1. 

Laboratoire de Mathématiques Raphaël Salem, UMR CNRS 6085, Université de Rouen, Avenue de l'université, BP12, 76801 Saint Étienne du Rouvray cedex, France, France

2. 

Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS - Université de Rouen, Avenue de l'Université, BP.12, 76801 Saint-Étienne du Rouvray

Received  August 2011 Revised  December 2012 Published  January 2013

We give existence and uniqueness results of the weak-renormalized solution for a class of nonlinear Boussinesq's systems. The main tools rely on regularity results for the Navier-Stokes equations with precise estimates on the solution with respect to the data in dimension $2$ and on the techniques involved for renormalized solutions of parabolic problems.
Citation: Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213
References:
[1]

A. Attaoui, D. Blanchard and O. Guibé, Weak-renormalized solution for a nonlinear Boussinesq system,, Differential Integral Equations, 22 (2009), 465.

[2]

C. Bernardi, B. Métivet and B. Pernaud-Thomas, Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par élément finis,, RAIRO Mod\'el. Math. Anal. Num\'er, 29 (1995), 871.

[3]

D. Blanchard, A few result on coupled systems of thermomechanics,, In, 23 (2009), 145.

[4]

D. Blanchard and F. Murat, Renormalized solutions of nonlinear parabolic problems with $L_1$ data: existence and uniqueness,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137. doi: 10.1017/S0308210500026986.

[5]

D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems,, J. Differential Equations, 177 (2001), 331. doi: 10.1006/jdeq.2000.4013.

[6]

D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection,, J. Differential Equations, 210 (2005), 383. doi: 10.1016/j.jde.2004.06.012.

[7]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237. doi: 10.1006/jfan.1996.3040.

[8]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data,, J. Funct. Anal., 87 (1989), 149. doi: 10.1016/0022-1236(89)90005-0.

[9]

J. Boussinesq, "Thèorie analytique de la chaleur," volume 2., Gauthier-Villars, (1903).

[10]

N. Bruyère, "Comportement asymptotique de problèmes posés dans des cylindres. Problèmes d'unicité pour les systèmes de Boussinesq,", PhD thesis, (2007).

[11]

N. Bruyère, Existence et unicité de la solutions faible-renormalisée pour un système non linéaire de Boussinesq,, C. R. Math. Acad. Sci. Paris, 346 (2008), 521. doi: 10.1016/j.crma.2008.03.005.

[12]

B. Climent and E. Fernández-Cara, Some existence and uniqueness results for a time-dependent coupled problem of the Navier-Stokes kind,, Math. Models Methods Appl. Sci., 8 (1998), 603. doi: 10.1142/S0218202598000275.

[13]

J. I. Díaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion,, Topol. Methods Nonlinear Anal., 11 (1998), 59.

[14]

C. Gerhardt, $L^p$-estimates for solutions to the instationary Navier-Stokes equations in dimension two,, Pacific J. Math., 79 (1978), 375.

[15]

P-L Lions, "Mathematical Topics in Fluid Mechanics," Vol. 1, volume 3 of Oxford Lecture Series in Mathematics and its Applications,, The Clarendon Press Oxford University Press, (1996).

[16]

L. Nirenberg, An extended interpolation inequality,, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 733.

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360.

[18]

R. Temam, "Navier-Stokes Equations,", AMS Chelsea Publishing, (2001).

[19]

R. Temam and A. Miranville, "Mathematical Modeling in Continuum Mechanics,", Cambridge University Press, (2005). doi: 10.1017/CBO9780511755422.

show all references

References:
[1]

A. Attaoui, D. Blanchard and O. Guibé, Weak-renormalized solution for a nonlinear Boussinesq system,, Differential Integral Equations, 22 (2009), 465.

[2]

C. Bernardi, B. Métivet and B. Pernaud-Thomas, Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par élément finis,, RAIRO Mod\'el. Math. Anal. Num\'er, 29 (1995), 871.

[3]

D. Blanchard, A few result on coupled systems of thermomechanics,, In, 23 (2009), 145.

[4]

D. Blanchard and F. Murat, Renormalized solutions of nonlinear parabolic problems with $L_1$ data: existence and uniqueness,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137. doi: 10.1017/S0308210500026986.

[5]

D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems,, J. Differential Equations, 177 (2001), 331. doi: 10.1006/jdeq.2000.4013.

[6]

D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection,, J. Differential Equations, 210 (2005), 383. doi: 10.1016/j.jde.2004.06.012.

[7]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237. doi: 10.1006/jfan.1996.3040.

[8]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data,, J. Funct. Anal., 87 (1989), 149. doi: 10.1016/0022-1236(89)90005-0.

[9]

J. Boussinesq, "Thèorie analytique de la chaleur," volume 2., Gauthier-Villars, (1903).

[10]

N. Bruyère, "Comportement asymptotique de problèmes posés dans des cylindres. Problèmes d'unicité pour les systèmes de Boussinesq,", PhD thesis, (2007).

[11]

N. Bruyère, Existence et unicité de la solutions faible-renormalisée pour un système non linéaire de Boussinesq,, C. R. Math. Acad. Sci. Paris, 346 (2008), 521. doi: 10.1016/j.crma.2008.03.005.

[12]

B. Climent and E. Fernández-Cara, Some existence and uniqueness results for a time-dependent coupled problem of the Navier-Stokes kind,, Math. Models Methods Appl. Sci., 8 (1998), 603. doi: 10.1142/S0218202598000275.

[13]

J. I. Díaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion,, Topol. Methods Nonlinear Anal., 11 (1998), 59.

[14]

C. Gerhardt, $L^p$-estimates for solutions to the instationary Navier-Stokes equations in dimension two,, Pacific J. Math., 79 (1978), 375.

[15]

P-L Lions, "Mathematical Topics in Fluid Mechanics," Vol. 1, volume 3 of Oxford Lecture Series in Mathematics and its Applications,, The Clarendon Press Oxford University Press, (1996).

[16]

L. Nirenberg, An extended interpolation inequality,, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 733.

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360.

[18]

R. Temam, "Navier-Stokes Equations,", AMS Chelsea Publishing, (2001).

[19]

R. Temam and A. Miranville, "Mathematical Modeling in Continuum Mechanics,", Cambridge University Press, (2005). doi: 10.1017/CBO9780511755422.

[1]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[2]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[3]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[4]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[5]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[6]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[7]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[8]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[9]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[10]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[11]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[12]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[13]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

[14]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[15]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

[16]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[17]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[18]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[19]

Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991

[20]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (6)

[Back to Top]