September  2013, 12(5): 2267-2275. doi: 10.3934/cpaa.2013.12.2267

Convexity of solutions to boundary blow-up problems

1. 

Department of Mathematics and Statistics, P.O.Box 35, FIN-40014 University of Jyväskylä, Finland

Received  September 2009 Revised  February 2010 Published  January 2013

We prove convexity of solutions to boundary blow-up problems for the singular infinity Laplacian and the $p$-Laplacian for $p\ge 2$. The proof is based on an extension of the results of Alvarez, Lasry and Lions [2] and on estimates of the boundary blow-up rate.
Citation: Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267
References:
[1]

H. Aikawa, T. Kilpeläinen, N. Shanmugalingam and X. Zhong, Boundary Harnack principle for $p$-harmonic functions in smooth Euclidean domains,, Potential Anal., 26 (2007), 281.  doi: 10.1007/s11118-006-9036-y.  Google Scholar

[2]

O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl., 76 (1997), 265.  doi: 10.1016/S0021-7824(97)89952-7.  Google Scholar

[3]

L. Bieberbach, $\Delta u= e^u$ und die automorphen Funktionen,, Math. Ann., 77 (1916), 173.  doi: 10.1007/BF01456901.  Google Scholar

[4]

O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry,, J. Differential Equations, 249 (2010), 931.  doi: 10.1016/j.jde.2010.02.023.  Google Scholar

[5]

M. G. Crandall and H. Ishii, The maximum principle for semicontinuous functions,, Differential Integral Equations, 3 (1990), 1001.   Google Scholar

[6]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[7]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness,, Nonlinear Anal., 20 (1993), 97.  doi: 10.1016/0362-546X(93)90012-H.  Google Scholar

[8]

W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains,, Proc. London Math. Soc., 54 (1987), 141.  doi: 10.1112/plms/s3-54.1.141.  Google Scholar

[9]

M. Feldman, Variational evolution problems and nonlocal geometric motion,, Arch. Ration. Mech. Anal., 146 (1999), 221.  doi: 10.1007/s002050050142.  Google Scholar

[10]

Y. Giga, "Surface Evolution Equations. A Level Set Approach,", Monographs in Mathematics, (2006).   Google Scholar

[11]

P. Juutinen, The boundary Harnack inequality for infinite harmonic functions in Lipschitz domains satisfying the interior ball condition,, Nonlinear Anal., 69 (2008), 1941.  doi: 10.1016/j.na.2007.07.035.  Google Scholar

[12]

P. Juutinen and J. D. Rossi, Large solutions for the infinity Laplacian,, Adv. Calc. Var., 1 (2008), 271.  doi: 10.1515/ACV.2008.011.  Google Scholar

[13]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Mathematics, (1150).   Google Scholar

[14]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[15]

Y. Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations,, Comm. Pure Appl. Math., 58 (2005), 85.  doi: 10.1002/cpa.20051.  Google Scholar

[16]

R. Osserman, On the inequality $\Delta u\ge f(u)$,, Pacific J. Math., 7 (1957), 1641.  doi: 10.2140/pjm.1957.7.1641.  Google Scholar

show all references

References:
[1]

H. Aikawa, T. Kilpeläinen, N. Shanmugalingam and X. Zhong, Boundary Harnack principle for $p$-harmonic functions in smooth Euclidean domains,, Potential Anal., 26 (2007), 281.  doi: 10.1007/s11118-006-9036-y.  Google Scholar

[2]

O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl., 76 (1997), 265.  doi: 10.1016/S0021-7824(97)89952-7.  Google Scholar

[3]

L. Bieberbach, $\Delta u= e^u$ und die automorphen Funktionen,, Math. Ann., 77 (1916), 173.  doi: 10.1007/BF01456901.  Google Scholar

[4]

O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry,, J. Differential Equations, 249 (2010), 931.  doi: 10.1016/j.jde.2010.02.023.  Google Scholar

[5]

M. G. Crandall and H. Ishii, The maximum principle for semicontinuous functions,, Differential Integral Equations, 3 (1990), 1001.   Google Scholar

[6]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[7]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness,, Nonlinear Anal., 20 (1993), 97.  doi: 10.1016/0362-546X(93)90012-H.  Google Scholar

[8]

W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains,, Proc. London Math. Soc., 54 (1987), 141.  doi: 10.1112/plms/s3-54.1.141.  Google Scholar

[9]

M. Feldman, Variational evolution problems and nonlocal geometric motion,, Arch. Ration. Mech. Anal., 146 (1999), 221.  doi: 10.1007/s002050050142.  Google Scholar

[10]

Y. Giga, "Surface Evolution Equations. A Level Set Approach,", Monographs in Mathematics, (2006).   Google Scholar

[11]

P. Juutinen, The boundary Harnack inequality for infinite harmonic functions in Lipschitz domains satisfying the interior ball condition,, Nonlinear Anal., 69 (2008), 1941.  doi: 10.1016/j.na.2007.07.035.  Google Scholar

[12]

P. Juutinen and J. D. Rossi, Large solutions for the infinity Laplacian,, Adv. Calc. Var., 1 (2008), 271.  doi: 10.1515/ACV.2008.011.  Google Scholar

[13]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Mathematics, (1150).   Google Scholar

[14]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[15]

Y. Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations,, Comm. Pure Appl. Math., 58 (2005), 85.  doi: 10.1002/cpa.20051.  Google Scholar

[16]

R. Osserman, On the inequality $\Delta u\ge f(u)$,, Pacific J. Math., 7 (1957), 1641.  doi: 10.2140/pjm.1957.7.1641.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]