September  2013, 12(5): 2267-2275. doi: 10.3934/cpaa.2013.12.2267

Convexity of solutions to boundary blow-up problems

1. 

Department of Mathematics and Statistics, P.O.Box 35, FIN-40014 University of Jyväskylä, Finland

Received  September 2009 Revised  February 2010 Published  January 2013

We prove convexity of solutions to boundary blow-up problems for the singular infinity Laplacian and the $p$-Laplacian for $p\ge 2$. The proof is based on an extension of the results of Alvarez, Lasry and Lions [2] and on estimates of the boundary blow-up rate.
Citation: Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267
References:
[1]

H. Aikawa, T. Kilpeläinen, N. Shanmugalingam and X. Zhong, Boundary Harnack principle for $p$-harmonic functions in smooth Euclidean domains,, Potential Anal., 26 (2007), 281. doi: 10.1007/s11118-006-9036-y. Google Scholar

[2]

O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl., 76 (1997), 265. doi: 10.1016/S0021-7824(97)89952-7. Google Scholar

[3]

L. Bieberbach, $\Delta u= e^u$ und die automorphen Funktionen,, Math. Ann., 77 (1916), 173. doi: 10.1007/BF01456901. Google Scholar

[4]

O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry,, J. Differential Equations, 249 (2010), 931. doi: 10.1016/j.jde.2010.02.023. Google Scholar

[5]

M. G. Crandall and H. Ishii, The maximum principle for semicontinuous functions,, Differential Integral Equations, 3 (1990), 1001. Google Scholar

[6]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[7]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness,, Nonlinear Anal., 20 (1993), 97. doi: 10.1016/0362-546X(93)90012-H. Google Scholar

[8]

W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains,, Proc. London Math. Soc., 54 (1987), 141. doi: 10.1112/plms/s3-54.1.141. Google Scholar

[9]

M. Feldman, Variational evolution problems and nonlocal geometric motion,, Arch. Ration. Mech. Anal., 146 (1999), 221. doi: 10.1007/s002050050142. Google Scholar

[10]

Y. Giga, "Surface Evolution Equations. A Level Set Approach,", Monographs in Mathematics, (2006). Google Scholar

[11]

P. Juutinen, The boundary Harnack inequality for infinite harmonic functions in Lipschitz domains satisfying the interior ball condition,, Nonlinear Anal., 69 (2008), 1941. doi: 10.1016/j.na.2007.07.035. Google Scholar

[12]

P. Juutinen and J. D. Rossi, Large solutions for the infinity Laplacian,, Adv. Calc. Var., 1 (2008), 271. doi: 10.1515/ACV.2008.011. Google Scholar

[13]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Mathematics, (1150). Google Scholar

[14]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503. doi: 10.1002/cpa.3160100402. Google Scholar

[15]

Y. Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations,, Comm. Pure Appl. Math., 58 (2005), 85. doi: 10.1002/cpa.20051. Google Scholar

[16]

R. Osserman, On the inequality $\Delta u\ge f(u)$,, Pacific J. Math., 7 (1957), 1641. doi: 10.2140/pjm.1957.7.1641. Google Scholar

show all references

References:
[1]

H. Aikawa, T. Kilpeläinen, N. Shanmugalingam and X. Zhong, Boundary Harnack principle for $p$-harmonic functions in smooth Euclidean domains,, Potential Anal., 26 (2007), 281. doi: 10.1007/s11118-006-9036-y. Google Scholar

[2]

O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints,, J. Math. Pures Appl., 76 (1997), 265. doi: 10.1016/S0021-7824(97)89952-7. Google Scholar

[3]

L. Bieberbach, $\Delta u= e^u$ und die automorphen Funktionen,, Math. Ann., 77 (1916), 173. doi: 10.1007/BF01456901. Google Scholar

[4]

O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry,, J. Differential Equations, 249 (2010), 931. doi: 10.1016/j.jde.2010.02.023. Google Scholar

[5]

M. G. Crandall and H. Ishii, The maximum principle for semicontinuous functions,, Differential Integral Equations, 3 (1990), 1001. Google Scholar

[6]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[7]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness,, Nonlinear Anal., 20 (1993), 97. doi: 10.1016/0362-546X(93)90012-H. Google Scholar

[8]

W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains,, Proc. London Math. Soc., 54 (1987), 141. doi: 10.1112/plms/s3-54.1.141. Google Scholar

[9]

M. Feldman, Variational evolution problems and nonlocal geometric motion,, Arch. Ration. Mech. Anal., 146 (1999), 221. doi: 10.1007/s002050050142. Google Scholar

[10]

Y. Giga, "Surface Evolution Equations. A Level Set Approach,", Monographs in Mathematics, (2006). Google Scholar

[11]

P. Juutinen, The boundary Harnack inequality for infinite harmonic functions in Lipschitz domains satisfying the interior ball condition,, Nonlinear Anal., 69 (2008), 1941. doi: 10.1016/j.na.2007.07.035. Google Scholar

[12]

P. Juutinen and J. D. Rossi, Large solutions for the infinity Laplacian,, Adv. Calc. Var., 1 (2008), 271. doi: 10.1515/ACV.2008.011. Google Scholar

[13]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Mathematics, (1150). Google Scholar

[14]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503. doi: 10.1002/cpa.3160100402. Google Scholar

[15]

Y. Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations,, Comm. Pure Appl. Math., 58 (2005), 85. doi: 10.1002/cpa.20051. Google Scholar

[16]

R. Osserman, On the inequality $\Delta u\ge f(u)$,, Pacific J. Math., 7 (1957), 1641. doi: 10.2140/pjm.1957.7.1641. Google Scholar

[1]

Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691

[2]

Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555

[3]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[4]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[5]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[6]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[7]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[8]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[9]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[10]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[11]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[12]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[13]

C. Brändle, F. Quirós, Julio D. Rossi. Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Communications on Pure & Applied Analysis, 2005, 4 (3) : 523-536. doi: 10.3934/cpaa.2005.4.523

[14]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[15]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[16]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[17]

Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113

[18]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[19]

Mingzhu Wu, Zuodong Yang. Existence of boundary blow-up solutions for a class of quasiliner elliptic systems for the subcritical case. Communications on Pure & Applied Analysis, 2007, 6 (2) : 531-540. doi: 10.3934/cpaa.2007.6.531

[20]

Jorge García-Melián, Julio D. Rossi, José C. Sabina de Lis. Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 549-562. doi: 10.3934/cpaa.2016.15.549

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]