2013, 12(6): 2393-2408. doi: 10.3934/cpaa.2013.12.2393

Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition

1. 

College of Mathematics and Computer Science, Key Laboratory of High Performance Computing, and Stochastic Information Processing(Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, China

Received  April 2012 Revised  December 2012 Published  May 2012

In this paper, we consider the problem \begin{eqnarray} -\Delta u=|x|^\alpha u^{p-1}, x \in \Omega,\\ u>0, x \in \Omega,\\ \frac{\partial u}{\partial \nu }+\beta u=0, x\in \partial \Omega, \end{eqnarray} where $\Omega$ is the unit ball in $R^N$ centered at the origin with $N\geq 3$, $\alpha>0, \beta>\frac{N-2}{2}, p\geq 2$ and $\nu $ is the unit outward vector normal to $\partial \Omega$. We investigate the asymptotic behavior of the ground state solutions $u_p$ of (1) as $p\to \frac{2N}{N-2}$. We show that the ground state solutions $u_p$ has a unique maximum point $x_p\in \bar\Omega$. In addition, the ground state solutions is non-radial provided that $p\to \frac{2N}{N-2}$.
Citation: Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393
References:
[1]

Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi,, Nonlinear Anal., (1991), 9.

[2]

Adimurthi and G. Mancini, Geometry and topology of the boundary in the critical Neumann problem,, J. Reine Angew. Math., 456 (1994), 1. doi: 10.1515/crll.1994.456.1.

[3]

Adimurthi and S. L. Yadava, Positive solution for Neumann problem with critical nonlinearity on boundary,, Comm. Partial Differential Equations, 16 (1991), 1733. doi: 10.1080/03605309108820821.

[4]

H. Brezis and E. Lieb, Sobolev inequalities with remainder terms,, J. Funct. Anal., 62 (1985), 73. doi: 10.1016/0022-1236(85)90020-5.

[5]

J. Byeon and Z-Q. Wang, On the Hénon equation: Asymptotic profile of ground state I,, Ann. I. H. Poincare., 23 (2006), 803. doi: 10.1016/j.anihpc.2006.04.001.

[6]

J. Byeon and Z-Q. Wang, On the Hénon equation: Asymptotic profile of ground state II,, J. Differential Equation, 216 (2005), 78. doi: 10.1016/j.jde.2005.02.018.

[7]

D. Cao and S. Peng, The asymptotic behavior of the ground state solutions for Hénon equation,, J. Math. Anal. Appl., 278 (2003), 1. doi: 10.1016/S0022-247X(02)00292-5.

[8]

Daomin Cao, E. S. Noussair and Shusen Yan, On a semilinear Robin prolem involving critical Sobolev exponent,, Advanced Nonlinear Studies, 1 (2001), 43.

[9]

Yuxia Fu and Qiuyi Dai, Positive solutions of the Robin problem for semilinear elliptic equations on annuli,, Rend. Lincei Mat. Appl., 19 (2008), 175. doi: 10.4171/RLM/516.

[10]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 8 (1981), 883. doi: 10.1080/03605308108820196.

[11]

Yonggen Gu and T. Liu, A priori estimate and existence of positive solutions of semilinear elliptic equations with the third boundary value problem,, J. Systems Sci. Complexity, 14 (2001), 389.

[12]

M. Hénon, Numerical experiments on the stability of spherical stellar systems,, Astronom. Astrophys., 24 (1973), 229. doi: 10.1007/978-94-010-9877-9_37.

[13]

Haiyang He, The Robin problem for the Hénon equation,, Accepted by Bulletin of the Australian Mathematic Society., ().

[14]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case,, Rev. Mat. Iberoamericana., (1985), 145. doi: 10.4171/RMI/6.

[15]

W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819. doi: 10.1002/cpa.3160440705.

[16]

D. Smets, J. B. Su and M. Willem, Non-radial ground states for the Henon equation,, Comm. Contemp. Math., 4 (2002), 467. doi: 10.1142/S0219199702000725.

[17]

D. Smets and M. Willem, Partial symmetry and asymptotic behavior for some elliptic variational problem,, Calc. Var. Partial Differential Equations, 18 (2003), 57. doi: 10.1007/s00526-002-0180-y.

[18]

X. J. Wang, Neumann problem for semilinear elliptic equations involving critical Sobolev exponents,, J. Differential Equation, 93 (1991), 283. doi: 10.1016/0022-0396(91)90014-Z.

show all references

References:
[1]

Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi,, Nonlinear Anal., (1991), 9.

[2]

Adimurthi and G. Mancini, Geometry and topology of the boundary in the critical Neumann problem,, J. Reine Angew. Math., 456 (1994), 1. doi: 10.1515/crll.1994.456.1.

[3]

Adimurthi and S. L. Yadava, Positive solution for Neumann problem with critical nonlinearity on boundary,, Comm. Partial Differential Equations, 16 (1991), 1733. doi: 10.1080/03605309108820821.

[4]

H. Brezis and E. Lieb, Sobolev inequalities with remainder terms,, J. Funct. Anal., 62 (1985), 73. doi: 10.1016/0022-1236(85)90020-5.

[5]

J. Byeon and Z-Q. Wang, On the Hénon equation: Asymptotic profile of ground state I,, Ann. I. H. Poincare., 23 (2006), 803. doi: 10.1016/j.anihpc.2006.04.001.

[6]

J. Byeon and Z-Q. Wang, On the Hénon equation: Asymptotic profile of ground state II,, J. Differential Equation, 216 (2005), 78. doi: 10.1016/j.jde.2005.02.018.

[7]

D. Cao and S. Peng, The asymptotic behavior of the ground state solutions for Hénon equation,, J. Math. Anal. Appl., 278 (2003), 1. doi: 10.1016/S0022-247X(02)00292-5.

[8]

Daomin Cao, E. S. Noussair and Shusen Yan, On a semilinear Robin prolem involving critical Sobolev exponent,, Advanced Nonlinear Studies, 1 (2001), 43.

[9]

Yuxia Fu and Qiuyi Dai, Positive solutions of the Robin problem for semilinear elliptic equations on annuli,, Rend. Lincei Mat. Appl., 19 (2008), 175. doi: 10.4171/RLM/516.

[10]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 8 (1981), 883. doi: 10.1080/03605308108820196.

[11]

Yonggen Gu and T. Liu, A priori estimate and existence of positive solutions of semilinear elliptic equations with the third boundary value problem,, J. Systems Sci. Complexity, 14 (2001), 389.

[12]

M. Hénon, Numerical experiments on the stability of spherical stellar systems,, Astronom. Astrophys., 24 (1973), 229. doi: 10.1007/978-94-010-9877-9_37.

[13]

Haiyang He, The Robin problem for the Hénon equation,, Accepted by Bulletin of the Australian Mathematic Society., ().

[14]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case,, Rev. Mat. Iberoamericana., (1985), 145. doi: 10.4171/RMI/6.

[15]

W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819. doi: 10.1002/cpa.3160440705.

[16]

D. Smets, J. B. Su and M. Willem, Non-radial ground states for the Henon equation,, Comm. Contemp. Math., 4 (2002), 467. doi: 10.1142/S0219199702000725.

[17]

D. Smets and M. Willem, Partial symmetry and asymptotic behavior for some elliptic variational problem,, Calc. Var. Partial Differential Equations, 18 (2003), 57. doi: 10.1007/s00526-002-0180-y.

[18]

X. J. Wang, Neumann problem for semilinear elliptic equations involving critical Sobolev exponents,, J. Differential Equation, 93 (1991), 283. doi: 10.1016/0022-0396(91)90014-Z.

[1]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[2]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[3]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[4]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[5]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[6]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition . Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[7]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[8]

Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113

[9]

C. Brändle, F. Quirós, Julio D. Rossi. Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Communications on Pure & Applied Analysis, 2005, 4 (3) : 523-536. doi: 10.3934/cpaa.2005.4.523

[10]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[11]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[12]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[13]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[14]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[15]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[16]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[17]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[18]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[19]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[20]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]