• Previous Article
    On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence
  • CPAA Home
  • This Issue
  • Next Article
    Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows
January  2013, 12(1): 303-340. doi: 10.3934/cpaa.2013.12.303

Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains

1. 

College of Mathematics and Computational Sciences, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060

2. 

College of Mathematics and Computer Sciences, Hunan Normal University, Changsha 410081, China

Received  June 2011 Revised  December 2011 Published  September 2012

For a singularly perturbed equation of inhomogeneous Allen-Cahn type with positive potential function in high dimensional general domain, we prove the existence of solutions, at least for some sequence of the positive parameter, which have clustered phase transition layers with mass centered close to a smooth closed stationary and non-degenerate hypersurface. Moreover, the interaction between neighboring layers is governed by a type of Jacobi-Toda system.
Citation: Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure & Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303
References:
[1]

N. D. Alikakos and P. W. Bates, On the singular limit in a phase field model of phase transitions,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 5 (1988), 141. Google Scholar

[2]

N. D. Alikakos, P. W. Bates and X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains,, Trans. Amer. Math. Soc., 351 (1999), 2777. doi: 10.1090/S0002-9947-99-02134-0. Google Scholar

[3]

N. D. Alikakos, P. W. Bates and G. Fusco, Solutions to the nonautonomous bistable equation with specified Morse index, I. Existence,, Trans. Amer. Math. Soc., 340 (1993), 641. Google Scholar

[4]

N. D. Alikakos, X. Chen and G. Fusco, Motion of a droplet by surface tension along the boundray,, Calc. Var. Partial Differential Equations, 11 (2000), 233. doi: 10.1007/s005260000052. Google Scholar

[5]

N. D. Alikakos and H. C. Simpson, A variational approach for a class of singular perturbation problems and applications,, Proc. Roy. Soc. Edinburgh Sect. A, 107 (1987), 27. doi: 10.1017/S0308210500029334. Google Scholar

[6]

S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta. Metall., 27 (1979), 1085. doi: 10.1016/0001-6160(79)90196-2. Google Scholar

[7]

S. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem,, J. Differential Equations, 67 (1987), 212. doi: 10.1016/0022-0396(87)90147-1. Google Scholar

[8]

L. Bronsard and B. Stoth, On the existence of high multiplicity interfaces,, Math. Res. Lett., 3 (1996), 41. Google Scholar

[9]

I. Chavel, "Eigenvalues in Riemannian Geometry,'', Pure and Applied Mathematics, (1984). Google Scholar

[10]

I. Chavel, "Riemannian Geometry - A Modern Introduction,'', Cambridge Tracts in Math. 108, (1993). Google Scholar

[11]

E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem,, J. Differential Equations, 194 (2003), 382. doi: 10.1016/S0022-0396(03)00176-1. Google Scholar

[12]

E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem,, Calc. Var. Partial Differential Equations, 20 (2004), 93. doi: 10.1007/s00526-003-0229-6. Google Scholar

[13]

M. del Pino, Layers with nonsmooth interface in a semilinear elliptic problem,, Comm. Partial Differential Equations, 17 (1992), 1695. doi: 10.1080/03605309208820900. Google Scholar

[14]

M. del Pino, Radially symmetric internal layers in a semilinear elliptic system,, Trans. Amer. Math. Soc., 347 (1995), 4807. doi: 10.1090/S0002-9947-1995-1303116-3. Google Scholar

[15]

M. del Pino, M. Kowalczyk and J. Wei, Concentration on curves for nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 60 (2007), 113. doi: 10.1002/cpa.20135. Google Scholar

[16]

M. del Pino, M. Kowalczyk and J. Wei, Resonance and interior layers in an inhomogeneous phase transition model,, SIAM J. Math. Anal., 38 (): 1542. doi: 10.1137/060649574. Google Scholar

[17]

M. del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interface in the Allen-Cahn equation,, Arch. Ration. Mech. Anal., 190 (2008), 141. doi: 10.1007/s00205-008-0143-3. Google Scholar

[18]

M. del Pino, M. Kowalczyk and J. Wei, The Jacobi-Toda system and foliated interfaces,, Discrete Contin. Dynam. Systems-A, 28 (2010), 975. doi: 10.3934/dcds.2010.28.975. Google Scholar

[19]

M. del Pino, M. Kowalczyk, J. Wei and J. Yang, Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature,, Geom. Funct. Anal., 20 (2010), 918. doi: 10.1007/s00039-010-0083-6. Google Scholar

[20]

A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in $N$-dimensional domains,, J. Differential Equations, 190 (2003), 16. doi: 10.1016/S0022-0396(02)00147-X. Google Scholar

[21]

Z. Du and C. Gui, Interior layers for an inhomogeneous Allen-Cahn equation,, J. Differential Equations, 249 (2010), 215. doi: 10.1016/j.jde.2010.03.024. Google Scholar

[22]

P. C. Fife, Boundary and interior transition layer phenomena for pairs of second-order differential equations,, J. Math. Anal. Appl., 54 (1976), 497. doi: 10.1016/0022-247X(76)90218-3. Google Scholar

[23]

P. Fife and M. W. Greenlee, Interior transition Layers of elliptic boundary value problem with a small parameter,, Russian Math. Survey, 29 (1974), 103. doi: 10.1070/RM1974v029n04ABEH001291. Google Scholar

[24]

G. Flores and P. Padilla, Higher energy solutions in the theory of phase transitions: a variational approach,, J. Differential Equations, 169 (2001), 190. doi: 10.1006/jdeq.2000.3898. Google Scholar

[25]

C. E. Garza-Hume and P. Padilla, Closed geodesic on oval surfaces and pattern formation,, Comm. Anal. Geom., 11 (2003), 223. Google Scholar

[26]

J. Hale and K. Sakamoto, Existence and stability of transition layers,, Japan J. Appl. Math., 5 (1988), 367. doi: 10.1007/BF03167908. Google Scholar

[27]

R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations,, Proc. Royal Soc. Edinburgh A, 111 (1989), 69. doi: 10.1017/S0308210500025026. Google Scholar

[28]

M. Kowalczyk, On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions,, Annali di Matematica Pura ed Applicata, 184 (2005), 17. doi: 10.1007/s10231-003-0088-y. Google Scholar

[29]

F. Li and K. Nakashima, Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains,, Discrete Contin. Dynam. Systems-A, 32 (2012), 1391. doi: 10.3934/dcds.2012.32.1391. Google Scholar

[30]

P. Li and S. Yau, On the Schrödinger equation and the eigenvalue problem,, Commun. Math. Phys., 88 (1983), 309. doi: 10.1007/BF01213210. Google Scholar

[31]

F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation,, Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire, 25 (2008), 609. doi: 10.1016/j.anihpc.2007.03.008. Google Scholar

[32]

A. Malchiodi, W.-M. Ni and J. Wei, Boundary clustered interfaces for the Allen-Cahn equation,, Pacific J. Math., 229 (2007), 447. doi: 10.2140/pjm.2007.229.447. Google Scholar

[33]

A. Malchiodi and J. Wei, Boundary interface for the Allen-Cahn equation,, Journal of Fixed Point Theory and Applications, 1 (2007), 305. doi: 10.1007/s11784-007-0016-7. Google Scholar

[34]

S. Minakshisundaram and A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds,, Canad. J. Math., 1 (1949), 242. doi: 10.4153/CJM-1949-021-5. Google Scholar

[35]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230. Google Scholar

[36]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,, J. Differential Equations, 191 (2003), 234. doi: 10.1016/S0022-0396(02)00181-X. Google Scholar

[37]

K. Nakashima and K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 20 (2003), 107. doi: 10.1016/S0294-1449(02)00008-2. Google Scholar

[38]

Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations,, SIAM J. Math. Anal., 18 (1987), 1726. doi: 10.1137/0518124. Google Scholar

[39]

F. Pacard and M. Ritoré, From constant mean curvature hypersurfaces to the gradient theory of phase transitions,, J. Diff. Geom., 64 (2003), 359. Google Scholar

[40]

P. Padilla and Y. Tonegawa, On the convergence of stable phase transitions,, Comm. Pure Appl. Math., 51 (1998), 551. doi: 10.1002/(SICI)1097-0312(199806)51:6<551::AID-CPA1>3.0.CO;2-6. Google Scholar

[41]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, I,, Comm Pure Appl. Math., 56 (2003), 1078. doi: 10.1002/cpa.10087. Google Scholar

[42]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, II,, Calc. Var. Partial Differential Equations, 21 (2004), 157. doi: 10.1007/s00526-003-0251-8. Google Scholar

[43]

K. Sakamoto, Construction and stability an alysis of transition layer solutions in reaction-diffusion systems,, Tohoku Math. J., 42 (1990), 17. doi: 10.2748/tmj/1178227692. Google Scholar

[44]

K. Sakamoto, Infinitely many fine modes bifurcating from radially symmetric internal layers,, Asymptot. Anal., 42 (2005), 55. Google Scholar

[45]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375. doi: 10.1007/s002050050081. Google Scholar

[46]

J. Wei and J. Yang, Toda system and cluster phase transition layers in an inhomogeneous phase transition model,, Asymptot. Anal., 69 (2010), 175. Google Scholar

show all references

References:
[1]

N. D. Alikakos and P. W. Bates, On the singular limit in a phase field model of phase transitions,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 5 (1988), 141. Google Scholar

[2]

N. D. Alikakos, P. W. Bates and X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains,, Trans. Amer. Math. Soc., 351 (1999), 2777. doi: 10.1090/S0002-9947-99-02134-0. Google Scholar

[3]

N. D. Alikakos, P. W. Bates and G. Fusco, Solutions to the nonautonomous bistable equation with specified Morse index, I. Existence,, Trans. Amer. Math. Soc., 340 (1993), 641. Google Scholar

[4]

N. D. Alikakos, X. Chen and G. Fusco, Motion of a droplet by surface tension along the boundray,, Calc. Var. Partial Differential Equations, 11 (2000), 233. doi: 10.1007/s005260000052. Google Scholar

[5]

N. D. Alikakos and H. C. Simpson, A variational approach for a class of singular perturbation problems and applications,, Proc. Roy. Soc. Edinburgh Sect. A, 107 (1987), 27. doi: 10.1017/S0308210500029334. Google Scholar

[6]

S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta. Metall., 27 (1979), 1085. doi: 10.1016/0001-6160(79)90196-2. Google Scholar

[7]

S. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem,, J. Differential Equations, 67 (1987), 212. doi: 10.1016/0022-0396(87)90147-1. Google Scholar

[8]

L. Bronsard and B. Stoth, On the existence of high multiplicity interfaces,, Math. Res. Lett., 3 (1996), 41. Google Scholar

[9]

I. Chavel, "Eigenvalues in Riemannian Geometry,'', Pure and Applied Mathematics, (1984). Google Scholar

[10]

I. Chavel, "Riemannian Geometry - A Modern Introduction,'', Cambridge Tracts in Math. 108, (1993). Google Scholar

[11]

E. N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem,, J. Differential Equations, 194 (2003), 382. doi: 10.1016/S0022-0396(03)00176-1. Google Scholar

[12]

E. N. Dancer and S. Yan, Construction of various types of solutions for an elliptic problem,, Calc. Var. Partial Differential Equations, 20 (2004), 93. doi: 10.1007/s00526-003-0229-6. Google Scholar

[13]

M. del Pino, Layers with nonsmooth interface in a semilinear elliptic problem,, Comm. Partial Differential Equations, 17 (1992), 1695. doi: 10.1080/03605309208820900. Google Scholar

[14]

M. del Pino, Radially symmetric internal layers in a semilinear elliptic system,, Trans. Amer. Math. Soc., 347 (1995), 4807. doi: 10.1090/S0002-9947-1995-1303116-3. Google Scholar

[15]

M. del Pino, M. Kowalczyk and J. Wei, Concentration on curves for nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 60 (2007), 113. doi: 10.1002/cpa.20135. Google Scholar

[16]

M. del Pino, M. Kowalczyk and J. Wei, Resonance and interior layers in an inhomogeneous phase transition model,, SIAM J. Math. Anal., 38 (): 1542. doi: 10.1137/060649574. Google Scholar

[17]

M. del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interface in the Allen-Cahn equation,, Arch. Ration. Mech. Anal., 190 (2008), 141. doi: 10.1007/s00205-008-0143-3. Google Scholar

[18]

M. del Pino, M. Kowalczyk and J. Wei, The Jacobi-Toda system and foliated interfaces,, Discrete Contin. Dynam. Systems-A, 28 (2010), 975. doi: 10.3934/dcds.2010.28.975. Google Scholar

[19]

M. del Pino, M. Kowalczyk, J. Wei and J. Yang, Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature,, Geom. Funct. Anal., 20 (2010), 918. doi: 10.1007/s00039-010-0083-6. Google Scholar

[20]

A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in $N$-dimensional domains,, J. Differential Equations, 190 (2003), 16. doi: 10.1016/S0022-0396(02)00147-X. Google Scholar

[21]

Z. Du and C. Gui, Interior layers for an inhomogeneous Allen-Cahn equation,, J. Differential Equations, 249 (2010), 215. doi: 10.1016/j.jde.2010.03.024. Google Scholar

[22]

P. C. Fife, Boundary and interior transition layer phenomena for pairs of second-order differential equations,, J. Math. Anal. Appl., 54 (1976), 497. doi: 10.1016/0022-247X(76)90218-3. Google Scholar

[23]

P. Fife and M. W. Greenlee, Interior transition Layers of elliptic boundary value problem with a small parameter,, Russian Math. Survey, 29 (1974), 103. doi: 10.1070/RM1974v029n04ABEH001291. Google Scholar

[24]

G. Flores and P. Padilla, Higher energy solutions in the theory of phase transitions: a variational approach,, J. Differential Equations, 169 (2001), 190. doi: 10.1006/jdeq.2000.3898. Google Scholar

[25]

C. E. Garza-Hume and P. Padilla, Closed geodesic on oval surfaces and pattern formation,, Comm. Anal. Geom., 11 (2003), 223. Google Scholar

[26]

J. Hale and K. Sakamoto, Existence and stability of transition layers,, Japan J. Appl. Math., 5 (1988), 367. doi: 10.1007/BF03167908. Google Scholar

[27]

R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations,, Proc. Royal Soc. Edinburgh A, 111 (1989), 69. doi: 10.1017/S0308210500025026. Google Scholar

[28]

M. Kowalczyk, On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions,, Annali di Matematica Pura ed Applicata, 184 (2005), 17. doi: 10.1007/s10231-003-0088-y. Google Scholar

[29]

F. Li and K. Nakashima, Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains,, Discrete Contin. Dynam. Systems-A, 32 (2012), 1391. doi: 10.3934/dcds.2012.32.1391. Google Scholar

[30]

P. Li and S. Yau, On the Schrödinger equation and the eigenvalue problem,, Commun. Math. Phys., 88 (1983), 309. doi: 10.1007/BF01213210. Google Scholar

[31]

F. Mahmoudi, A. Malchiodi and J. Wei, Transition layer for the heterogeneous Allen-Cahn equation,, Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire, 25 (2008), 609. doi: 10.1016/j.anihpc.2007.03.008. Google Scholar

[32]

A. Malchiodi, W.-M. Ni and J. Wei, Boundary clustered interfaces for the Allen-Cahn equation,, Pacific J. Math., 229 (2007), 447. doi: 10.2140/pjm.2007.229.447. Google Scholar

[33]

A. Malchiodi and J. Wei, Boundary interface for the Allen-Cahn equation,, Journal of Fixed Point Theory and Applications, 1 (2007), 305. doi: 10.1007/s11784-007-0016-7. Google Scholar

[34]

S. Minakshisundaram and A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds,, Canad. J. Math., 1 (1949), 242. doi: 10.4153/CJM-1949-021-5. Google Scholar

[35]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230. Google Scholar

[36]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,, J. Differential Equations, 191 (2003), 234. doi: 10.1016/S0022-0396(02)00181-X. Google Scholar

[37]

K. Nakashima and K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 20 (2003), 107. doi: 10.1016/S0294-1449(02)00008-2. Google Scholar

[38]

Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations,, SIAM J. Math. Anal., 18 (1987), 1726. doi: 10.1137/0518124. Google Scholar

[39]

F. Pacard and M. Ritoré, From constant mean curvature hypersurfaces to the gradient theory of phase transitions,, J. Diff. Geom., 64 (2003), 359. Google Scholar

[40]

P. Padilla and Y. Tonegawa, On the convergence of stable phase transitions,, Comm. Pure Appl. Math., 51 (1998), 551. doi: 10.1002/(SICI)1097-0312(199806)51:6<551::AID-CPA1>3.0.CO;2-6. Google Scholar

[41]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, I,, Comm Pure Appl. Math., 56 (2003), 1078. doi: 10.1002/cpa.10087. Google Scholar

[42]

P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, II,, Calc. Var. Partial Differential Equations, 21 (2004), 157. doi: 10.1007/s00526-003-0251-8. Google Scholar

[43]

K. Sakamoto, Construction and stability an alysis of transition layer solutions in reaction-diffusion systems,, Tohoku Math. J., 42 (1990), 17. doi: 10.2748/tmj/1178227692. Google Scholar

[44]

K. Sakamoto, Infinitely many fine modes bifurcating from radially symmetric internal layers,, Asymptot. Anal., 42 (2005), 55. Google Scholar

[45]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375. doi: 10.1007/s002050050081. Google Scholar

[46]

J. Wei and J. Yang, Toda system and cluster phase transition layers in an inhomogeneous phase transition model,, Asymptot. Anal., 69 (2010), 175. Google Scholar

[1]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[2]

Fang Li, Kimie Nakashima. Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1391-1420. doi: 10.3934/dcds.2012.32.1391

[3]

Manuel del Pino, Michal Kowalczyk, Juncheng Wei. The Jacobi-Toda system and foliated interfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 975-1006. doi: 10.3934/dcds.2010.28.975

[4]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[5]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[6]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[7]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[8]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[9]

Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947

[10]

Hirokazu Ninomiya, Masaharu Taniguchi. Global stability of traveling curved fronts in the Allen-Cahn equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 819-832. doi: 10.3934/dcds.2006.15.819

[11]

Michał Kowalczyk, Yong Liu, Frank Pacard. Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$. Networks & Heterogeneous Media, 2012, 7 (4) : 837-855. doi: 10.3934/nhm.2012.7.837

[12]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[13]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[14]

Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639

[15]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[16]

Ken Shirakawa. Stability analysis for two dimensional Allen-Cahn equations associated with crystalline type energies. Conference Publications, 2009, 2009 (Special) : 697-707. doi: 10.3934/proc.2009.2009.697

[17]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[18]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[19]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[20]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]