Citation: |
[1] |
J.-Y. Chemin, "Perfect Incompressible Fluids," Oxford Lecture Series in Mathematics and its Applications, vol. 14. The Clarendon Press, Oxford University Press: New York, 1998. |
[2] |
R. Dachin, "Fourier Analysis Methods for PDE's," 2005. Available from: http://perso-math.univ-mlv.fr/users/danchin.raphael/courschine.pdf. |
[3] |
J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rhe., 5 (1961), 23-34.doi: 10.1122/1.548883. |
[4] |
J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392. |
[5] |
I. Gallagher and F. Planchon, On global infinite energy solutions to the Navier-Stokes equations in two dimensions, Arch. Rational Mech. Anal., 161 (2002), 307-337.doi: 10.1007/s002050100175. |
[6] |
R. Hardt and D. Kinderlehrer, "Mathematical Questions of Liquid Crystal Theory," The IMA Volumes in Mathematics andits Applications 5, New York: Springer-Verlag, 1987. |
[7] |
M. Hong, Global existence of solutions of the simplied Ericksen-Leslie system in dimension two, Calc. Var., 40 (2011), 15-36.doi: 10.1007/s00526-010-0331-5. |
[8] |
X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Commun. Math. Phys., 296 (2010), 861-880.doi: 10.1007/s00220-010-1017-8. |
[9] |
P.-G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Research Notes in Mathematics, Chapman & Hall/CRC, 2002. |
[10] |
F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.doi: 10.1007/BF00251810. |
[11] |
F. Leslie, Theory of flow phenomenum in liquid crystals, In "The Theory of Liquid Crystals," London-New York: Academic Press, 4 (1979), 1-81. |
[12] |
F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.doi: 10.1002/cpa.3160420605. |
[13] |
F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.doi: 10.1007/s00205-009-0278-x. |
[14] |
F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.doi: 10.1002/cpa.3160480503. |
[15] |
F. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete. Contin. Dyn. Syst., 2 (1996), 1-22.doi: 10.3934/dcds.1996.2.1. |
[16] |
F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math., 31B (2010), 921-938.doi: 10.1007/s11401-010-0612-5. |
[17] |
T. Runst and W. Sickel, "Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations," de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co.: Berlin, 1996. |
[18] |
H. Sun and C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 23 (2009), 455-475.doi: 10.3934/dcds.2009.23.455. |
[19] |
C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.doi: 10.1007/s00205-010-0343-5. |
[20] |
H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 26 (2010), 379-396.doi: 10.3934/dcds.2010.26.379. |
[21] |
H. Wu, X. Xu and C. Liu, Asymptotic behavior for a Nematic liquid crystal model with different kinematic transport properties, DOI 10.1007/s00526-011-0460-5. doi: 10.1007/s00526-011-0460-5. |