\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows

Abstract / Introduction Related Papers Cited by
  • In this paper we consider a coupled hydrodynamical system which involves the Navier-Stokes equations for the velocity field and kinematic transport equations for the molecular orientation field. By applying the Chemin-Lerner's time-space estimates for the heat equation and the Fourier localization technique, we prove that when initial data belongs to the critical Besov spaces with negative-order, there exists a unique local solution, and this solution is global when initial data is small enough. As a corollary, we obtain existence of global self-similar solution. In order to figure out the relation between the solution obtained here and weak solutions of standard sense, we establish a stability result, which yields in a direct way that all global weak solutions associated with the same initial data must coincide with the solution obtained here, namely, weak-strong uniqueness holds.
    Mathematics Subject Classification: Primary: 35A01, 35B35; Secondary: 76A15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J.-Y. Chemin, "Perfect Incompressible Fluids," Oxford Lecture Series in Mathematics and its Applications, vol. 14. The Clarendon Press, Oxford University Press: New York, 1998.

    [2]

    R. Dachin, "Fourier Analysis Methods for PDE's," 2005. Available from: http://perso-math.univ-mlv.fr/users/danchin.raphael/courschine.pdf.

    [3]

    J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rhe., 5 (1961), 23-34.doi: 10.1122/1.548883.

    [4]

    J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392.

    [5]

    I. Gallagher and F. Planchon, On global infinite energy solutions to the Navier-Stokes equations in two dimensions, Arch. Rational Mech. Anal., 161 (2002), 307-337.doi: 10.1007/s002050100175.

    [6]

    R. Hardt and D. Kinderlehrer, "Mathematical Questions of Liquid Crystal Theory," The IMA Volumes in Mathematics andits Applications 5, New York: Springer-Verlag, 1987.

    [7]

    M. Hong, Global existence of solutions of the simplied Ericksen-Leslie system in dimension two, Calc. Var., 40 (2011), 15-36.doi: 10.1007/s00526-010-0331-5.

    [8]

    X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Commun. Math. Phys., 296 (2010), 861-880.doi: 10.1007/s00220-010-1017-8.

    [9]

    P.-G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Research Notes in Mathematics, Chapman & Hall/CRC, 2002.

    [10]

    F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.doi: 10.1007/BF00251810.

    [11]

    F. Leslie, Theory of flow phenomenum in liquid crystals, In "The Theory of Liquid Crystals," London-New York: Academic Press, 4 (1979), 1-81.

    [12]

    F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.doi: 10.1002/cpa.3160420605.

    [13]

    F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.doi: 10.1007/s00205-009-0278-x.

    [14]

    F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.doi: 10.1002/cpa.3160480503.

    [15]

    F. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete. Contin. Dyn. Syst., 2 (1996), 1-22.doi: 10.3934/dcds.1996.2.1.

    [16]

    F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math., 31B (2010), 921-938.doi: 10.1007/s11401-010-0612-5.

    [17]

    T. Runst and W. Sickel, "Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations," de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co.: Berlin, 1996.

    [18]

    H. Sun and C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 23 (2009), 455-475.doi: 10.3934/dcds.2009.23.455.

    [19]

    C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.doi: 10.1007/s00205-010-0343-5.

    [20]

    H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 26 (2010), 379-396.doi: 10.3934/dcds.2010.26.379.

    [21]

    H. Wu, X. Xu and C. LiuAsymptotic behavior for a Nematic liquid crystal model with different kinematic transport properties, DOI 10.1007/s00526-011-0460-5. doi: 10.1007/s00526-011-0460-5.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return