\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A biharmonic equation in $\mathbb{R}^4$ involving nonlinearities with critical exponential growth

Abstract / Introduction Related Papers Cited by
  • In this paper we give sufficient conditions for the existence of solutions of a biharmonic equation of the form

    $ \Delta^2 u + V(x)u = f(u)$ in $\mathbb{R}^4$

    where $V$ is a continuous positive potential bounded away from zero and the nonlinearity $f(s)$ behaves like $e^{\alpha_0 s^2}$ at infinity for some $\alpha_0>0$.
    In order to overcome the lack of compactness due to the unboundedness of the domain $\mathbb{R}^4$, we require some additional assumptions on $V$. In the case when the potential $V$ is large at infinity we obtain the existence of a nontrivial solution, while requiring the potential $V$ to be spherically symmetric we obtain the existence of a nontrivial radial solution. In both cases, the main difficulty is the loss of compactness due to the critical exponential growth of the nonlinear term $f$.

    Mathematics Subject Classification: Primary: 35J30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math., 128 (1988), 385-398.doi: 10.2307/1971445.

    [2]

    Adimurthi, Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in $\er^2$, Proc. Indian Acad. Sci. Math. Sci., 99 (1989), 49-73.doi: 10.1007/BF02874647.

    [3]

    Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393-413.

    [4]

    C. O. Alves and J. M. Do Ó, Positive solutions of a fourth-order semilinear problem involving critical growth, Adv. Nonlinear Stud., 2 (2002), 437-458.

    [5]

    C. O. Alves, J. M. Do Ó and O. H. Miyagaki, Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents, Nonlinear Anal. Ser. A: Theory Methods, 46 (2001), 121-133.doi: 10.1016/S0362-546X(99)00449-6.

    [6]

    A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7.

    [7]

    T. Bartsch, M. Schneider and T. Weth, Multiple solutions of a critical polyharmonic equation, J. Reine Angew. Math., 571 (2004), 131-143.doi: 10.1515/crll.2004.037.

    [8]

    H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555.

    [9]

    H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure. Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405.

    [10]

    J. Chabrowski and J. M. Do Ó, On some fourth-order semilinear elliptic problems in $\er^N$, Nonlinear Anal. Ser. A: Theory Methods, 49 (2002), 861-884.doi: 10.1016/S0362-546X(01)00144-4.

    [11]

    D. G. Costa, On a class of elliptic systems in $R^N$, Electon. J. Differential Equations, 1994, No. 07, approx. 14 pp. (electronic).

    [12]

    D. G. De Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.

    [13]

    J. M. Do Ó, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.doi: 10.1016/j.jmaa.2008.03.074.

    [14]

    D. E. Edmunds, D. Fortunato and E. Jannelli, Fourth-order nonlinear elliptic equations with critical growth, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 83 (1989), 115-119.

    [15]

    D. E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal., 112 (1990), 269-289.doi: 10.1007/BF00381236.

    [16]

    E. H. Lieb and M. Loss, "Analysis," Second edition, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001.

    [17]

    G. Lu and Y. Yang, Adams' inequalities for bi-Laplacian and extremal functions in dimension four, Adv. Math., 220 (2009), 1135-1170.doi: 10.1016/j.aim.2008.10.011.

    [18]

    J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Math. J., 20 (1971), 1077-1092.doi: 10.1512/iumj.1971.20.20101.

    [19]

    R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30.doi: 10.1007/BF01941322.

    [20]

    P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.doi: 10.1512/iumj.1986.35.35036.

    [21]

    P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl., 69 (1990), 55-83.

    [22]

    H. L. Royden, "Real Analysis," Third edition, Macmillan Publishing Company, New York, 1988.

    [23]

    B. Ruf, A sharp trudinger-moser type inequality for unbounded domains in $R^2$, J. Funct. Anal., 219 (2005), 340-367.doi: 10.1016/j.jfa.2004.06.013.

    [24]

    B. Ruf and F. SaniSharp Adams-type inequalities in $R^n$, Trans. Amer. Math. Soc., in press, http://dx.doi.org/10.1090/S0002-9947-2012-05561-9

    [25]

    F. Sani, A biharmonic equation in $R^4$ involving nonlinearities with subcritical exponential growth, Adv. Nonlinear Stud., 11 (2011), 889-904.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(172) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return