2013, 12(2): 679-693. doi: 10.3934/cpaa.2013.12.679

Non degeneracy for solutions of singularly perturbed nonlinear elliptic problems on symmetric Riemannian manifolds

1. 

Dipartimento di Matematica Applicata, Università di Pisa, via Buonarroti 1c, 56127, Pisa, Italy

2. 

Dipartimento di Matematica Applicata "U.Dini", Università di Pisa, Via Bonanno 25B - 56126 Pisa, Italy

Received  June 2011 Revised  December 2011 Published  September 2012

Given a symmetric Riemannian manifold $(M,g)$, we show some results of genericity for non degenerate sign changing solutions of singularly perturbed nonlinear elliptic problems with respect to the parameters: the positive number $\varepsilon$ and the symmetric metric $g$. Using these results we obtain a lower bound on the number of non degenerate solutions which change sign exactly once.
Citation: Marco Ghimenti, A. M. Micheletti. Non degeneracy for solutions of singularly perturbed nonlinear elliptic problems on symmetric Riemannian manifolds. Communications on Pure & Applied Analysis, 2013, 12 (2) : 679-693. doi: 10.3934/cpaa.2013.12.679
References:
[1]

N. Aronszajn, A. Krzywicki and J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds,, Ark. Mat., 4 (1962), 417.

[2]

V. Benci, Introduction to Morse theory. A new approach,, in, (1995), 37.

[3]

V. Benci, C. Bonanno and A. M. Micheletti, On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds,, J. Funct. Anal., 252 (2007), 464.

[4]

V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology,, Calc. Var. Partial Differential Equations, 2 (1994), 29.

[5]

J. Byeon and J. Park, Singularly perturbed nonlinear elliptic problems on manifolds,, Calc. Var. Partial Differential Equations, 24 (2005), 459.

[6]

E. Dancer and S. Yan, Multipeak solutions for a singularly perturbed neumann problem,, Pacific J. Math., 189 (1999), 241.

[7]

E. N. Dancer, A. M. Micheletti and A. Pistoia, Multipeak solutions for some singularly perturbed nonlinear elliptic problems in a {Riemannian manifold},, Manuscripta Math., 128 (2009), 163.

[8]

M. Del Pino, P. Felmer and J. Wei, On the role of mean curvature in some singularly perturbed neumann problems,, SIAM J. Math. Anal., 31 (1999), 63.

[9]

M. Ghimenti and A. M. Micheletti, On the number of nodal solutions for a nonlinear elliptic problem on symmetric Riemannian manifolds,, Proceedings of the 2007 Conference on Variational and Topological Methods: Theory, (2007), 15.

[10]

C. Gui, Multipeak solutions for a semilinear neumann problem,, Duke Math J., 84 (1996), 739.

[11]

C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed neumann problems,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 17 (2000), 47.

[12]

N. Hirano, Multiple existence of solutions for a nonlinear elliptic problem in a Riemannian manifold, , Nonlinear Anal., 70 (2009), 671.

[13]

Y. Y. Li, On a singularly perturbed equation with neumann boundary condition,, Comm. Partial Differential Equations, 23 (1998), 487.

[14]

A. M. Micheletti and A. Pistoia, Generic properties of singularly perturbed nonlinear elliptic problems on Riemannian manifolds, , Adv. Nonlinear Stud., 9 (2009), 803.

[15]

A. M. Micheletti and A. Pistoia, Nodal solutions for a singularly perturbed nonlinear elliptic problem in a Riemannian manifold, , Adv. Nonlinear Stud., 9 (2009), 565.

[16]

A. M. Micheletti and A. Pistoia, The role of the scalar curvature in a nonlinear elliptic problem in a Riemannian manifold, , Calc. Var. Partial Differential Equations, 34 (2009), 233.

[17]

A. M. Micheletti and A. Pistoia, On the existence of nodal solutions for a nonlinear elliptic problem on symmetric Riemannian manifolds,, Int. J. Differ. Equ., (2010).

[18]

W. N. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819.

[19]

W. N. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear neumann problem,, Duke Math. J., 70 (1993), 247.

[20]

F. Quinn, Transversal approximation on Banach manifolds,, in, (1968), 213.

[21]

J.-C. Saut and R. Temam, Generic properties of nonlinear boundary value problems,, Comm. Partial Differential Equations, 4 (1979), 293.

[22]

L. Schwartz, "Functional Analysis,", Courant Institute, (1964).

[23]

K. Uhlenbeck, Generic properties of eigenfunctions,, Amer. J. Math., 98 (1976), 1059.

[24]

D. Visetti, Multiplicity of solutions of a zero mass nonlinear equation in a Riemannian manifold, , J. Differential Equations, 245 (2008), 2397.

[25]

J. Wei, On the boundary spike layer solutions to a singularly perturbed neumann problem,, J. Differential Equations, 134 (1997), 104.

[26]

J. Wei and T. Weth, On the number of nodal solutions to a singularly perturbed Neumann problem,, Manuscripta Math., 117 (2005), 333.

[27]

J. Wei and M. Winter, Multi-peak solutions for a wide class of singular perturbation problems,, J. London Math. Soc., 59 (1999), 585.

show all references

References:
[1]

N. Aronszajn, A. Krzywicki and J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds,, Ark. Mat., 4 (1962), 417.

[2]

V. Benci, Introduction to Morse theory. A new approach,, in, (1995), 37.

[3]

V. Benci, C. Bonanno and A. M. Micheletti, On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds,, J. Funct. Anal., 252 (2007), 464.

[4]

V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology,, Calc. Var. Partial Differential Equations, 2 (1994), 29.

[5]

J. Byeon and J. Park, Singularly perturbed nonlinear elliptic problems on manifolds,, Calc. Var. Partial Differential Equations, 24 (2005), 459.

[6]

E. Dancer and S. Yan, Multipeak solutions for a singularly perturbed neumann problem,, Pacific J. Math., 189 (1999), 241.

[7]

E. N. Dancer, A. M. Micheletti and A. Pistoia, Multipeak solutions for some singularly perturbed nonlinear elliptic problems in a {Riemannian manifold},, Manuscripta Math., 128 (2009), 163.

[8]

M. Del Pino, P. Felmer and J. Wei, On the role of mean curvature in some singularly perturbed neumann problems,, SIAM J. Math. Anal., 31 (1999), 63.

[9]

M. Ghimenti and A. M. Micheletti, On the number of nodal solutions for a nonlinear elliptic problem on symmetric Riemannian manifolds,, Proceedings of the 2007 Conference on Variational and Topological Methods: Theory, (2007), 15.

[10]

C. Gui, Multipeak solutions for a semilinear neumann problem,, Duke Math J., 84 (1996), 739.

[11]

C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed neumann problems,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 17 (2000), 47.

[12]

N. Hirano, Multiple existence of solutions for a nonlinear elliptic problem in a Riemannian manifold, , Nonlinear Anal., 70 (2009), 671.

[13]

Y. Y. Li, On a singularly perturbed equation with neumann boundary condition,, Comm. Partial Differential Equations, 23 (1998), 487.

[14]

A. M. Micheletti and A. Pistoia, Generic properties of singularly perturbed nonlinear elliptic problems on Riemannian manifolds, , Adv. Nonlinear Stud., 9 (2009), 803.

[15]

A. M. Micheletti and A. Pistoia, Nodal solutions for a singularly perturbed nonlinear elliptic problem in a Riemannian manifold, , Adv. Nonlinear Stud., 9 (2009), 565.

[16]

A. M. Micheletti and A. Pistoia, The role of the scalar curvature in a nonlinear elliptic problem in a Riemannian manifold, , Calc. Var. Partial Differential Equations, 34 (2009), 233.

[17]

A. M. Micheletti and A. Pistoia, On the existence of nodal solutions for a nonlinear elliptic problem on symmetric Riemannian manifolds,, Int. J. Differ. Equ., (2010).

[18]

W. N. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819.

[19]

W. N. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear neumann problem,, Duke Math. J., 70 (1993), 247.

[20]

F. Quinn, Transversal approximation on Banach manifolds,, in, (1968), 213.

[21]

J.-C. Saut and R. Temam, Generic properties of nonlinear boundary value problems,, Comm. Partial Differential Equations, 4 (1979), 293.

[22]

L. Schwartz, "Functional Analysis,", Courant Institute, (1964).

[23]

K. Uhlenbeck, Generic properties of eigenfunctions,, Amer. J. Math., 98 (1976), 1059.

[24]

D. Visetti, Multiplicity of solutions of a zero mass nonlinear equation in a Riemannian manifold, , J. Differential Equations, 245 (2008), 2397.

[25]

J. Wei, On the boundary spike layer solutions to a singularly perturbed neumann problem,, J. Differential Equations, 134 (1997), 104.

[26]

J. Wei and T. Weth, On the number of nodal solutions to a singularly perturbed Neumann problem,, Manuscripta Math., 117 (2005), 333.

[27]

J. Wei and M. Winter, Multi-peak solutions for a wide class of singular perturbation problems,, J. London Math. Soc., 59 (1999), 585.

[1]

Marco Ghimenti, Anna Maria Micheletti, Angela Pistoia. The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2535-2560. doi: 10.3934/dcds.2014.34.2535

[2]

Andrés Ávila, Louis Jeanjean. A result on singularly perturbed elliptic problems. Communications on Pure & Applied Analysis, 2005, 4 (2) : 341-356. doi: 10.3934/cpaa.2005.4.341

[3]

Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151

[4]

A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253

[5]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[6]

Weichung Wang, Tsung-Fang Wu, Chien-Hsiang Liu. On the multiple spike solutions for singularly perturbed elliptic systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 237-258. doi: 10.3934/dcdsb.2013.18.237

[7]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[8]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[9]

Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737

[10]

Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure & Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125

[11]

Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793

[12]

Norimichi Hirano, A. M. Micheletti, A. Pistoia. Existence of sign changing solutions for some critical problems on $\mathbb R^N$. Communications on Pure & Applied Analysis, 2005, 4 (1) : 143-164. doi: 10.3934/cpaa.2005.4.143

[13]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[14]

Luigi Montoro. On the shape of the least-energy solutions to some singularly perturbed mixed problems. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1731-1752. doi: 10.3934/cpaa.2010.9.1731

[15]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[16]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[17]

Ida De Bonis, Daniela Giachetti. Singular parabolic problems with possibly changing sign data. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2047-2064. doi: 10.3934/dcdsb.2014.19.2047

[18]

Bernhard Ruf, P. N. Srikanth. Hopf fibration and singularly perturbed elliptic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 823-838. doi: 10.3934/dcdss.2014.7.823

[19]

Wei Long, Shuangjie Peng, Jing Yang. Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 917-939. doi: 10.3934/dcds.2016.36.917

[20]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]