2013, 12(2): 899-921. doi: 10.3934/cpaa.2013.12.899

Local well-posedness of quasi-linear systems generalizing KdV

1. 

Department of Mathematics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada

Received  September 2011 Revised  August 2012 Published  September 2012

In this article we prove local well-posedness of quasilinear dispersive systems of PDE generalizing KdV. These results adapt the ideas of Kenig-Ponce-Vega from the Quasi-Linear Schrödinger equations to the third order dispersive problems. The main ingredient of the proof is a local smoothing estimate for a general linear problem that allows us to proceed via the artificial viscosity method.
Citation: Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899
References:
[1]

T. Akhunov, "Local Well Posedness of Dispersive Systems in One Dimension,", Ph.D. thesis, (2011).

[2]

D. M. Ambrose, G. Simpson, J. D. Wright, and D. G. Yang, Ill-posedness of degenerate dispersive equations,, Nonlinearity \textbf{25} (2012), 25 (2012). doi: 10.1088/0951-7715/25/9/2655.

[3]

D. M. Ambrose and J. D. Wright, Dispersion vs. anti-diffusion: well-posedness in variable coefficient and quasilinear equations of KdV-type,, ArXiv e-prints (2012)., (2012).

[4]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation,, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555. doi: 10.1098/rsta.1975.0035.

[5]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45. doi: 10.1007/s002200050801.

[6]

P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations,, J. Amer. Math. Soc., 1 (1988), 413. doi: S0894-0347-1988-0928265-0.

[7]

W. Craig, J. Goodman, Linear dispersive equations of Airy type,, J. Differential Equations \textbf{87} (1990), 87 (1990), 38. doi: 10.1016/0022-0396(90)90014-G.

[8]

W. Craig, T. Kappeler and W. Strauss, Gain of regularity for equations of KdV type,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 9 (1992), 147.

[9]

W. Craig, T. Kappeler and W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation,, Comm. Pure Appl. Math., 48 (1995), 769. doi: 10.1002/cpa.3160480802.

[10]

S. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of solutions,, J. Math. Kyoto Univ., 34 (1994), 319.

[11]

N. Hayashi and T. Ozawa, Remarks on nonlinear Schrödinger equations in one space dimension,, Differential Integral Equations, 7 (1994), 453.

[12]

L. Hörmander, "Lectures on Nonlinear Hyperbolic Differential Equations,", Math\'ematiques & Applications (Berlin) [Mathematics & Applications], (1997).

[13]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation,, Studies in applied mathematics, (1983), 93.

[14]

C. E. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 10 (1993), 255.

[15]

C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573. doi: 10.1090/S0894-0347-96-00200-7.

[16]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrödinger equations,, Invent. Math., 158 (2004), 343. doi: 10.1007/s00222-004-0373-4.

[17]

C. E. Kenig and G. Staffilani, Local well-posedness for higher order nonlinear dispersive systems,, J. Fourier Anal. Appl., 3 (1997), 417. doi: 10.1007/BF02649104.

[18]

S. N. Kruzhkov and A. V. Faminskiĭ, Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation,, Mat. Sb. (N.S.) \textbf{120} (1983), 120 (1983), 396.

[19]

W. K. Lim and G. Ponce, On the initial value problem for the one dimensional quasi-linear Schrödinger equations,, SIAM J. Math. Anal., 34 (2002), 435. doi: 10.1137/S0036141001399520.

[20]

J. L. Marzuola, J. Metcalfe and D. Tataru, Quasilinear Schrödinger equations i: Small data and quadratic interactions, , Advances in Mathematics \textbf{231} (2012), 231 (2012). doi: 10.1016/j.aim.2012.06.010.

[21]

S. Mizohata, "On the Cauchy Problem,", Notes and Reports in Mathematics in Science and Engineering, (1985).

[22]

P. Sjölin, Regularity of solutions to the Schrödinger equation,, Duke Math. J., 55 (1987), 699. doi: 10.1215/S0012-7094-87-05535-9.

[23]

L. Vega, Schrödinger equations: pointwise convergence to the initial data,, Proc. Amer. Math. Soc., 102 (1988), 874. doi: 10.1090/S0002-9939-1988-0934859-0.

show all references

References:
[1]

T. Akhunov, "Local Well Posedness of Dispersive Systems in One Dimension,", Ph.D. thesis, (2011).

[2]

D. M. Ambrose, G. Simpson, J. D. Wright, and D. G. Yang, Ill-posedness of degenerate dispersive equations,, Nonlinearity \textbf{25} (2012), 25 (2012). doi: 10.1088/0951-7715/25/9/2655.

[3]

D. M. Ambrose and J. D. Wright, Dispersion vs. anti-diffusion: well-posedness in variable coefficient and quasilinear equations of KdV-type,, ArXiv e-prints (2012)., (2012).

[4]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation,, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555. doi: 10.1098/rsta.1975.0035.

[5]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45. doi: 10.1007/s002200050801.

[6]

P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations,, J. Amer. Math. Soc., 1 (1988), 413. doi: S0894-0347-1988-0928265-0.

[7]

W. Craig, J. Goodman, Linear dispersive equations of Airy type,, J. Differential Equations \textbf{87} (1990), 87 (1990), 38. doi: 10.1016/0022-0396(90)90014-G.

[8]

W. Craig, T. Kappeler and W. Strauss, Gain of regularity for equations of KdV type,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 9 (1992), 147.

[9]

W. Craig, T. Kappeler and W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation,, Comm. Pure Appl. Math., 48 (1995), 769. doi: 10.1002/cpa.3160480802.

[10]

S. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of solutions,, J. Math. Kyoto Univ., 34 (1994), 319.

[11]

N. Hayashi and T. Ozawa, Remarks on nonlinear Schrödinger equations in one space dimension,, Differential Integral Equations, 7 (1994), 453.

[12]

L. Hörmander, "Lectures on Nonlinear Hyperbolic Differential Equations,", Math\'ematiques & Applications (Berlin) [Mathematics & Applications], (1997).

[13]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation,, Studies in applied mathematics, (1983), 93.

[14]

C. E. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 10 (1993), 255.

[15]

C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573. doi: 10.1090/S0894-0347-96-00200-7.

[16]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for quasi-linear Schrödinger equations,, Invent. Math., 158 (2004), 343. doi: 10.1007/s00222-004-0373-4.

[17]

C. E. Kenig and G. Staffilani, Local well-posedness for higher order nonlinear dispersive systems,, J. Fourier Anal. Appl., 3 (1997), 417. doi: 10.1007/BF02649104.

[18]

S. N. Kruzhkov and A. V. Faminskiĭ, Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation,, Mat. Sb. (N.S.) \textbf{120} (1983), 120 (1983), 396.

[19]

W. K. Lim and G. Ponce, On the initial value problem for the one dimensional quasi-linear Schrödinger equations,, SIAM J. Math. Anal., 34 (2002), 435. doi: 10.1137/S0036141001399520.

[20]

J. L. Marzuola, J. Metcalfe and D. Tataru, Quasilinear Schrödinger equations i: Small data and quadratic interactions, , Advances in Mathematics \textbf{231} (2012), 231 (2012). doi: 10.1016/j.aim.2012.06.010.

[21]

S. Mizohata, "On the Cauchy Problem,", Notes and Reports in Mathematics in Science and Engineering, (1985).

[22]

P. Sjölin, Regularity of solutions to the Schrödinger equation,, Duke Math. J., 55 (1987), 699. doi: 10.1215/S0012-7094-87-05535-9.

[23]

L. Vega, Schrödinger equations: pointwise convergence to the initial data,, Proc. Amer. Math. Soc., 102 (1988), 874. doi: 10.1090/S0002-9939-1988-0934859-0.

[1]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[2]

Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024

[3]

Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007

[4]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[5]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[6]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[7]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[8]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[9]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[10]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[11]

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275

[12]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[13]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[14]

Juan-Ming Yuan, Jiahong Wu. A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1525-1536. doi: 10.3934/dcds.2010.26.1525

[15]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[16]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[17]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[18]

Frédéric Gibou, Doron Levy, Carlos Cárdenas, Pingyu Liu, Arthur Boyer. Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning. Mathematical Biosciences & Engineering, 2005, 2 (2) : 209-226. doi: 10.3934/mbe.2005.2.209

[19]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[20]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]