• Previous Article
    Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space
  • CPAA Home
  • This Issue
  • Next Article
    On some elementary properties of vector minimizers of the Allen-Cahn energy
2014, 13(3): 1017-1044. doi: 10.3934/cpaa.2014.13.1017

Homogenisation theory for Friedrichs systems

1. 

Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, 31 Osijek, Croatia

2. 

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10 Zagreb, Croatia

Received  March 2013 Revised  September 2013 Published  December 2013

We develop a general homogenisation procedure for Friedrichs systems. Under reasonable assumptions, the concepts of $G$ and $H$-convergence are introduced. As Friedrichs systems can be used to represent various boundary or initial-boundary value problems for partial differential equations, some additional assumptions are needed for compactness results. These assumptions are particularly examined for the stationary diffusion equation, the heat equation and a model example of a first order equation leading to memory effects. In the first two cases, the equivalence with the original notion of $H$-convergence is proved.
Citation: Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017
References:
[1]

Grégoire Allaire, Shape Optimization by the Homogenization Method,, Springer-Verlag, (2002).

[2]

Nenad Antonić and Krešimir Burazin, Graph spaces of first-order linear partial differential operators,, \emph{Math. Communications}, 14 (2009), 135.

[3]

Nenad Antonić and Krešimir Burazin, Intrinsic boundary conditions for Friedrichs systems,, \emph{Comm. Partial Diff. Eq.}, 35 (2010), 1690.

[4]

Nenad Antonić and Krešimir Burazin, Boundary operator from matrix field formulation of boundary conditions for Friedrichs systems,, \emph{J. Diff. Eq.}, 250 (2011), 3630.

[5]

Nenad Antonić, Krešimir Burazin and Marko Vrdoljak, Second-order equations as Friedrichs systems,, \emph{Nonlinear Analysis: RWA}, 14 (2014), 290.

[6]

Nenad Antonić, Krešimir Burazin and Marko Vrdoljak, Heat equation as a Friedrichs system,, \emph{Journal of Mathematical Analysis and Applications}, 404 (2013), 537.

[7]

Nenad Antonić and Marko Vrdoljak, Parabolic H-convergence and small-amplitude homogenization,, \emph{Applicable Analysis}, 88 (2009), 1493.

[8]

Alain Bensoussan, Jacques-Lous Lions and Georgios Papanicolaou, Asymptotic Analysis in Periodic Structures,, North\'c湌olland, (1978).

[9]

Krešimir Burazin, Contributions to the theory of Friedrichs' and Hyperbolic Systems,, Ph.D thesis (in Croatian), (2008).

[10]

Tan Bui-Thanh, Leszek Demkowicz and Omar Ghattas, A unified discontinuous Petrov-Galerkin method and its analysis for Friedrichs' systems,, \emph{SIAM J. Numer. Anal.}, 51 (2013), 1933.

[11]

Andrea Dall'Aglio and Francois Murat, A corrector result for $H$-converging parabolic problems with time-dependent coefficients,, \emph{Annali della Scuola Normale Superiore di Pisa}, 25 (1997), 329.

[12]

Daniele Antonio Di Pietro and Alexandre Ern, Mathematical Aspects of Discontinuous Galer\-Kin Methods,, Springer, (2012).

[13]

Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology, Vol. II,, Springer, (1992).

[14]

Alexandre Ern and Jean-Luc Guermond, Theory and Practice of Finite Elements,, Springer, (2004).

[15]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory,, \emph{SIAM J. Numer. Anal.}, 44 (2006), 753.

[16]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. II. Second-order elliptic PDEs,, \emph{SIAM J. Numer. Anal.}, 44 (2006), 2363.

[17]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. III. Multifield theories with partial coercivity,, \emph{SIAM J. Numer. Anal.}, 46 (2008), 776.

[18]

Alexandre Ern, Jean-Luc Guermond and Gilbert Caplain, An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems,, \emph{Comm. Partial Diff. Eq.}, 32 (2007), 317.

[19]

Kurt O. Friedrichs, Symmetric positive linear differential equations,, \emph{Comm. Pure Appl. Math.}, 11 (1958), 333.

[20]

Max Jensen, Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions,, Ph.D thesis, (2004).

[21]

Jacques-Lous Lions and Enrico Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. 1,, Springer, (1972).

[22]

François Murat and Luc Tartar, H-convergence,, in \emph{S\'eminaire d'Analyse Fonctionnelle et Num\'erique de l'Universit\'e d'Alger, (1978), 21.

[23]

Jeffrey Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, \emph{Trans. Amer. Math. Soc.}, 291 (1985), 167.

[24]

Sergio Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore,, \emph{Ann. Scuola Norm. Sup. Pisa}, 21 (1967), 657.

[25]

Sergio Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, \emph{Ann. Scuola Norm. Sup. Pisa}, 22 (1968), 571.

[26]

Sergio Spagnolo, Convergence of parabolic equations,, \emph{Bolletino della Unione Matematica Italiana}, 14 (1977), 547.

[27]

Luc Tartar, Problèmes de contrôle des coefficients dans des équations aux dérivées partielles,, in \emph{Control Theory, 107 (1975), 420.

[28]

Luc Tartar, Nonlocal effects induced by homogenisation,, in \emph{Partial Differential Equations and the Calculus of Variation, (1989), 925.

[29]

Luc Tartar, The General Theory of Homogenization: A Personalized Introduction,, Springer, (2009).

[30]

Marcus Waurick, On the theory of homogenization of evolutionary equations in Hilbert spaces,, preprint, ().

[31]

Vasili V. Žikov, Sergei M. Kozlov, Ol'ga A. Oleinik and Ha Tien Ngoan, Homogenization and G-convergence of differential operators,, \emph{Uspehi Mat. Nauk}, 34 (1979), 65.

[32]

Vasili V. Žikov, Sergei M. Kozlov and Ol'ga A. Oleinik, On G-convergence of parabolic operators,, \emph{Russ. Math. Surv.}, 36 (1981), 9.

show all references

References:
[1]

Grégoire Allaire, Shape Optimization by the Homogenization Method,, Springer-Verlag, (2002).

[2]

Nenad Antonić and Krešimir Burazin, Graph spaces of first-order linear partial differential operators,, \emph{Math. Communications}, 14 (2009), 135.

[3]

Nenad Antonić and Krešimir Burazin, Intrinsic boundary conditions for Friedrichs systems,, \emph{Comm. Partial Diff. Eq.}, 35 (2010), 1690.

[4]

Nenad Antonić and Krešimir Burazin, Boundary operator from matrix field formulation of boundary conditions for Friedrichs systems,, \emph{J. Diff. Eq.}, 250 (2011), 3630.

[5]

Nenad Antonić, Krešimir Burazin and Marko Vrdoljak, Second-order equations as Friedrichs systems,, \emph{Nonlinear Analysis: RWA}, 14 (2014), 290.

[6]

Nenad Antonić, Krešimir Burazin and Marko Vrdoljak, Heat equation as a Friedrichs system,, \emph{Journal of Mathematical Analysis and Applications}, 404 (2013), 537.

[7]

Nenad Antonić and Marko Vrdoljak, Parabolic H-convergence and small-amplitude homogenization,, \emph{Applicable Analysis}, 88 (2009), 1493.

[8]

Alain Bensoussan, Jacques-Lous Lions and Georgios Papanicolaou, Asymptotic Analysis in Periodic Structures,, North\'c湌olland, (1978).

[9]

Krešimir Burazin, Contributions to the theory of Friedrichs' and Hyperbolic Systems,, Ph.D thesis (in Croatian), (2008).

[10]

Tan Bui-Thanh, Leszek Demkowicz and Omar Ghattas, A unified discontinuous Petrov-Galerkin method and its analysis for Friedrichs' systems,, \emph{SIAM J. Numer. Anal.}, 51 (2013), 1933.

[11]

Andrea Dall'Aglio and Francois Murat, A corrector result for $H$-converging parabolic problems with time-dependent coefficients,, \emph{Annali della Scuola Normale Superiore di Pisa}, 25 (1997), 329.

[12]

Daniele Antonio Di Pietro and Alexandre Ern, Mathematical Aspects of Discontinuous Galer\-Kin Methods,, Springer, (2012).

[13]

Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology, Vol. II,, Springer, (1992).

[14]

Alexandre Ern and Jean-Luc Guermond, Theory and Practice of Finite Elements,, Springer, (2004).

[15]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory,, \emph{SIAM J. Numer. Anal.}, 44 (2006), 753.

[16]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. II. Second-order elliptic PDEs,, \emph{SIAM J. Numer. Anal.}, 44 (2006), 2363.

[17]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. III. Multifield theories with partial coercivity,, \emph{SIAM J. Numer. Anal.}, 46 (2008), 776.

[18]

Alexandre Ern, Jean-Luc Guermond and Gilbert Caplain, An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems,, \emph{Comm. Partial Diff. Eq.}, 32 (2007), 317.

[19]

Kurt O. Friedrichs, Symmetric positive linear differential equations,, \emph{Comm. Pure Appl. Math.}, 11 (1958), 333.

[20]

Max Jensen, Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions,, Ph.D thesis, (2004).

[21]

Jacques-Lous Lions and Enrico Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. 1,, Springer, (1972).

[22]

François Murat and Luc Tartar, H-convergence,, in \emph{S\'eminaire d'Analyse Fonctionnelle et Num\'erique de l'Universit\'e d'Alger, (1978), 21.

[23]

Jeffrey Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, \emph{Trans. Amer. Math. Soc.}, 291 (1985), 167.

[24]

Sergio Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore,, \emph{Ann. Scuola Norm. Sup. Pisa}, 21 (1967), 657.

[25]

Sergio Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, \emph{Ann. Scuola Norm. Sup. Pisa}, 22 (1968), 571.

[26]

Sergio Spagnolo, Convergence of parabolic equations,, \emph{Bolletino della Unione Matematica Italiana}, 14 (1977), 547.

[27]

Luc Tartar, Problèmes de contrôle des coefficients dans des équations aux dérivées partielles,, in \emph{Control Theory, 107 (1975), 420.

[28]

Luc Tartar, Nonlocal effects induced by homogenisation,, in \emph{Partial Differential Equations and the Calculus of Variation, (1989), 925.

[29]

Luc Tartar, The General Theory of Homogenization: A Personalized Introduction,, Springer, (2009).

[30]

Marcus Waurick, On the theory of homogenization of evolutionary equations in Hilbert spaces,, preprint, ().

[31]

Vasili V. Žikov, Sergei M. Kozlov, Ol'ga A. Oleinik and Ha Tien Ngoan, Homogenization and G-convergence of differential operators,, \emph{Uspehi Mat. Nauk}, 34 (1979), 65.

[32]

Vasili V. Žikov, Sergei M. Kozlov and Ol'ga A. Oleinik, On G-convergence of parabolic operators,, \emph{Russ. Math. Surv.}, 36 (1981), 9.

[1]

Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic & Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031

[2]

Yi Zhang, Liwei Zhang, Jia Wu. On the convergence properties of a smoothing approach for mathematical programs with symmetric cone complementarity constraints. Journal of Industrial & Management Optimization, 2018, 14 (3) : 981-1005. doi: 10.3934/jimo.2017086

[3]

Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 1. Convergence to equilibrium. Conference Publications, 2011, 2011 (Special) : 931-940. doi: 10.3934/proc.2011.2011.931

[4]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[5]

Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012

[6]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[7]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[8]

Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure & Applied Analysis, 2008, 7 (1) : 49-61. doi: 10.3934/cpaa.2008.7.49

[9]

Yanxing Cui, Chuanlong Wang, Ruiping Wen. On the convergence of generalized parallel multisplitting iterative methods for semidefinite linear systems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 863-873. doi: 10.3934/naco.2012.2.863

[10]

Victor Wasiolek. Uniform global existence and convergence of Euler-Maxwell systems with small parameters. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2007-2021. doi: 10.3934/cpaa.2016025

[11]

Toshiko Ogiwara, Hiroshi Matano. Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 1-34. doi: 10.3934/dcds.1999.5.1

[12]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[13]

Yuhong Dai, Nobuo Yamashita. Convergence analysis of sparse quasi-Newton updates with positive definite matrix completion for two-dimensional functions. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 61-69. doi: 10.3934/naco.2011.1.61

[14]

Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 2. Periodic solutions. Conference Publications, 2011, 2011 (Special) : 941-952. doi: 10.3934/proc.2011.2011.941

[15]

Xiaoxue Gong, Ying Xu, Vinay Mahadeo, Tulin Kaman, Johan Larsson, James Glimm. Mesh convergence for turbulent combustion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4383-4402. doi: 10.3934/dcds.2016.36.4383

[16]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[17]

James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001

[18]

Benjamin Jourdain, Julien Reygner. Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4963-4996. doi: 10.3934/dcds.2016015

[19]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[20]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]