• Previous Article
    The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions
  • CPAA Home
  • This Issue
  • Next Article
    Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces
May  2014, 13(3): 1141-1165. doi: 10.3934/cpaa.2014.13.1141

Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications

1. 

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Caixa postal 668, 13560-970 São Carlos, São Paulo, Brazil

2. 

BCAM Basque Center for Applied Mathematics, Mazarredo 14, E-48009 Bilbao, Basque Country

Received  April 2013 Revised  September 2013 Published  December 2013

This article is a continuation of our previous work [5], where we formulated general existence theorems for pullback exponential attractors for asymptotically compact evolution processes in Banach spaces and discussed its implications in the autonomous case. We now study properties of the attractors and use our theoretical results to prove the existence of pullback exponential attractors in two examples, where previous results do not apply.
Citation: Alexandre Nolasco de Carvalho, Stefanie Sonner. Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1141-1165. doi: 10.3934/cpaa.2014.13.1141
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, 2nd edition, (2003).   Google Scholar

[2]

J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent ,, \emph{Comm. Partial Differential Equations}, 17 (1992), 841.  doi: 10.1080/03605309208820866.  Google Scholar

[3]

T. Caraballo, A. N. Carvalho, J. A. Langa and L. F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes ,, \emph{Nonlinear Anal.}, 72 (2010), 1967.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, \emph{Appl. Math. Sci.}, 182 (2012).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results ,, \emph{Commun. Pure and Appl. Anal.}, 12 (2013), 3047.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics,, Amer. Math. Soc., (2002).   Google Scholar

[7]

H. Crauel, A. Debussche and F. Flandoli, Random attractors ,, \emph{J. Dynam. Differential Equations}, 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[8]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic equations ,, \emph{J. Math. Anal. Appl.}, 381 (2011), 748.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[9]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, Research in Applied Mathematics, (1994).   Google Scholar

[10]

D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Operators,, Cambridge University Press, (1996).  doi: 10.1017/CBO9780511662201.  Google Scholar

[11]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\R ^3$ ,, \emph{C. R. Acad. Sci. Paris Sr. I Math.}, 330 (2000), 713.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[12]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems ,, \emph{Proc. R. Soc. Edinburgh Sect. A}, 135A (2005), 703.  doi: 10.1017/S030821050000408X.  Google Scholar

[13]

M. A. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors non-autonomous dissipative systems ,, \emph{J. Math. Soc. Japan}, 63 (2011), 647.  doi: 10.2969/jmsj/06320647.  Google Scholar

[14]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988).   Google Scholar

[15]

A. N. Kolmogorov and V. M. Tihomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional spaces ,, \emph{Amer. Math. Soc. Transl. Ser. 2}, 17 (1961), 277.   Google Scholar

[16]

J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors ,, \emph{Discrete Contin. Dyn. Syst.}, 26 (2010), 1329.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[17]

J. A. Langa, J. C. Robinson and A. Suárez, Stability, instability and bifurcation phenomena in non-autonomous differential equations ,, \emph{Nonlinearity}, 15 (2002), 887.  doi: 10.1088/0951-7715/15/3/322.  Google Scholar

[18]

J. A. Langa and B. Schmalfuss, Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations ,, \emph{Stoch. Dyn.}, 4 (2004), 385.  doi: 10.1142/S0219493704001127.  Google Scholar

[19]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems ,, \emph{Nonlinear Anal.}, 71 (2009), 3956.  doi: 10.1016/j.na.2009.02.065.  Google Scholar

[20]

X. Mora, Semilinear parabolic problems define semiflows on $C^k$ spaces ,, \emph{Trans. Amer. Math. Soc.}, 278 (1983), 21.  doi: 10.2307/1999300.  Google Scholar

[21]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992).   Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[23]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, 2nd edition, (1997).   Google Scholar

[24]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications,, Springer-Verlag, (2010).  doi: 10.1007/978-3-642-04631-5.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, 2nd edition, (2003).   Google Scholar

[2]

J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent ,, \emph{Comm. Partial Differential Equations}, 17 (1992), 841.  doi: 10.1080/03605309208820866.  Google Scholar

[3]

T. Caraballo, A. N. Carvalho, J. A. Langa and L. F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes ,, \emph{Nonlinear Anal.}, 72 (2010), 1967.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, \emph{Appl. Math. Sci.}, 182 (2012).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results ,, \emph{Commun. Pure and Appl. Anal.}, 12 (2013), 3047.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics,, Amer. Math. Soc., (2002).   Google Scholar

[7]

H. Crauel, A. Debussche and F. Flandoli, Random attractors ,, \emph{J. Dynam. Differential Equations}, 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[8]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic equations ,, \emph{J. Math. Anal. Appl.}, 381 (2011), 748.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[9]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, Research in Applied Mathematics, (1994).   Google Scholar

[10]

D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Operators,, Cambridge University Press, (1996).  doi: 10.1017/CBO9780511662201.  Google Scholar

[11]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\R ^3$ ,, \emph{C. R. Acad. Sci. Paris Sr. I Math.}, 330 (2000), 713.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[12]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems ,, \emph{Proc. R. Soc. Edinburgh Sect. A}, 135A (2005), 703.  doi: 10.1017/S030821050000408X.  Google Scholar

[13]

M. A. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors non-autonomous dissipative systems ,, \emph{J. Math. Soc. Japan}, 63 (2011), 647.  doi: 10.2969/jmsj/06320647.  Google Scholar

[14]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988).   Google Scholar

[15]

A. N. Kolmogorov and V. M. Tihomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional spaces ,, \emph{Amer. Math. Soc. Transl. Ser. 2}, 17 (1961), 277.   Google Scholar

[16]

J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors ,, \emph{Discrete Contin. Dyn. Syst.}, 26 (2010), 1329.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[17]

J. A. Langa, J. C. Robinson and A. Suárez, Stability, instability and bifurcation phenomena in non-autonomous differential equations ,, \emph{Nonlinearity}, 15 (2002), 887.  doi: 10.1088/0951-7715/15/3/322.  Google Scholar

[18]

J. A. Langa and B. Schmalfuss, Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations ,, \emph{Stoch. Dyn.}, 4 (2004), 385.  doi: 10.1142/S0219493704001127.  Google Scholar

[19]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems ,, \emph{Nonlinear Anal.}, 71 (2009), 3956.  doi: 10.1016/j.na.2009.02.065.  Google Scholar

[20]

X. Mora, Semilinear parabolic problems define semiflows on $C^k$ spaces ,, \emph{Trans. Amer. Math. Soc.}, 278 (1983), 21.  doi: 10.2307/1999300.  Google Scholar

[21]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992).   Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[23]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, 2nd edition, (1997).   Google Scholar

[24]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications,, Springer-Verlag, (2010).  doi: 10.1007/978-3-642-04631-5.  Google Scholar

[1]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[2]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[3]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[6]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[7]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[8]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[9]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[10]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[11]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[12]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[13]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[14]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[15]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[16]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[17]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[20]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (9)

[Back to Top]