• Previous Article
    Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Incompressible limit for the full magnetohydrodynamics flows under Strong Stratification on unbounded domains
2014, 13(1): 119-133. doi: 10.3934/cpaa.2014.13.119

The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction

1. 

Dipartimento di Matematica Pura e Applicata, Università degli Studi di Padova, Via Belzoni, 7, 35131, Padova

Received  May 2012 Revised  August 2012 Published  July 2013

We prove a comparison principle for viscosity solutions of a fully nonlinear equation satisfying a condition of non-degeneracy in a fixed direction. We apply these results to prove that a continuous solution of the corresponding Dirichlet problem exists. To obtain the existence of barrier functions and well-posedness, we find suitable explicit assumptions on the domain and on the ellipticity constants of the operator.
Citation: Paola Mannucci. The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Communications on Pure & Applied Analysis, 2014, 13 (1) : 119-133. doi: 10.3934/cpaa.2014.13.119
References:
[1]

M. Bardi and S. Bottacin, On the Dirichlet problem for nonlinear degenerate elliptic equations and applications to optimal control,, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 13.

[2]

M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi Bellman Equations,", Systems and Control: Foundations and Applications. Birkhauser, (1997).

[3]

M. Bardi and P. Mannucci, On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations,, Commun. Pure Appl. Anal., 5 (2006), 709.

[4]

M. Bardi and P. Mannucci, Comparison principles for subelliptic equations of Monge-Ampère type,, Boll. Unione Mat. Ital., 9 (2008), 489.

[5]

M. Bardi and P. Mannucci, Comparison principles for equations of Monge-Ampère type in Carnot groups: a direct proof,, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 41.

[6]

M. Bardi and P. Mannucci, Comparison principles and Dirichlet problem for fully nonlinear degenerate equations of Monge-Ampère type,, to appear on Forum Math., (2013), 2013. doi: DOI: 10.1515/forum-2013-0067.

[7]

F. H. Beatrous, T. J. Bieske and J. J. Manfredi, The maximum principle for vector fields, in, Amer. Math. Soc., Providence, RI, 2005, 1-9., 370 (2005), 1.

[8]

T. Bieske, On infinite harmonic functions on the Heisenberg group,, Comm. Partial Differential Equations, 27 (2002), 727.

[9]

T. Bieske, Viscosity solutions on Grushin-type planes,, Illinois J. Math., 46 (2002), 893.

[10]

T. Bieske and L. Capogna, The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathodory metrics,, Trans. Amer. Math. Soc., 357 (2005), 795.

[11]

I. Birindelli, I. Capuzzo Dolcetta and A. Cutrì, Indefinite semi-linear equations on the Heisenberg group: a priori bounds and existence,, Comm. Partial Differential Equations, 23 (1998), 1123.

[12]

I. Birindelli and B. Stroffolini, Existence theorems for fully nonlinear equations in the Heisenberg group,, Subelliptic PDE's and applications to geometry and finance, 6 (2007), 49.

[13]

A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory For Their Sub-Laplacians,", Springer, (2007).

[14]

M. G. Crandall, Viscosity solutions: a primer,, In, (1660).

[15]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1.

[16]

A. Cutrì and N. Tchou, Barrier functions for Pucci-Heisenberg operators and applications,, Int. J. Dyn. Syst. Differ. Equ., 1, 2 (2007), 117.

[17]

G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups,", Princeton University Press, (1982).

[18]

C. E. Gutierrez and A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group,, Comm. Partial Differential Equations, 29 (2004), 1305.

[19]

L. Hörmander, Hypoelliptic Second Order Differential Equations,, Acta Math. Uppsala, 119 (1967), 147.

[20]

M. A. Katsoulakis, A representation formula and regularizing properties for viscosity solutions of second-order fully nonlinear degenerate parabolic equations,, Nonlinear Analysis, 24 (1995), 147.

[21]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,, J. Diff. Eq., 83 (1990), 26.

[22]

R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations,, Arch. Rational Mech., 101 (1988), 1.

[23]

J. J. Manfredi, Nonlinear subelliptic equations on Carnot groups,, Notes of a course given at the Third School on Analysis and Geometry in Metric Spaces, (2003).

[24]

C. Y. Wang, The Aronsson equation for absolute minimizers of $L^\infty$-functionals associated with vector fields satisfying Hörmander's condition,, Trans. Amer. Math. Soc. 359, 1 (2007), 91.

show all references

References:
[1]

M. Bardi and S. Bottacin, On the Dirichlet problem for nonlinear degenerate elliptic equations and applications to optimal control,, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 13.

[2]

M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi Bellman Equations,", Systems and Control: Foundations and Applications. Birkhauser, (1997).

[3]

M. Bardi and P. Mannucci, On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations,, Commun. Pure Appl. Anal., 5 (2006), 709.

[4]

M. Bardi and P. Mannucci, Comparison principles for subelliptic equations of Monge-Ampère type,, Boll. Unione Mat. Ital., 9 (2008), 489.

[5]

M. Bardi and P. Mannucci, Comparison principles for equations of Monge-Ampère type in Carnot groups: a direct proof,, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 41.

[6]

M. Bardi and P. Mannucci, Comparison principles and Dirichlet problem for fully nonlinear degenerate equations of Monge-Ampère type,, to appear on Forum Math., (2013), 2013. doi: DOI: 10.1515/forum-2013-0067.

[7]

F. H. Beatrous, T. J. Bieske and J. J. Manfredi, The maximum principle for vector fields, in, Amer. Math. Soc., Providence, RI, 2005, 1-9., 370 (2005), 1.

[8]

T. Bieske, On infinite harmonic functions on the Heisenberg group,, Comm. Partial Differential Equations, 27 (2002), 727.

[9]

T. Bieske, Viscosity solutions on Grushin-type planes,, Illinois J. Math., 46 (2002), 893.

[10]

T. Bieske and L. Capogna, The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathodory metrics,, Trans. Amer. Math. Soc., 357 (2005), 795.

[11]

I. Birindelli, I. Capuzzo Dolcetta and A. Cutrì, Indefinite semi-linear equations on the Heisenberg group: a priori bounds and existence,, Comm. Partial Differential Equations, 23 (1998), 1123.

[12]

I. Birindelli and B. Stroffolini, Existence theorems for fully nonlinear equations in the Heisenberg group,, Subelliptic PDE's and applications to geometry and finance, 6 (2007), 49.

[13]

A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory For Their Sub-Laplacians,", Springer, (2007).

[14]

M. G. Crandall, Viscosity solutions: a primer,, In, (1660).

[15]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1.

[16]

A. Cutrì and N. Tchou, Barrier functions for Pucci-Heisenberg operators and applications,, Int. J. Dyn. Syst. Differ. Equ., 1, 2 (2007), 117.

[17]

G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups,", Princeton University Press, (1982).

[18]

C. E. Gutierrez and A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group,, Comm. Partial Differential Equations, 29 (2004), 1305.

[19]

L. Hörmander, Hypoelliptic Second Order Differential Equations,, Acta Math. Uppsala, 119 (1967), 147.

[20]

M. A. Katsoulakis, A representation formula and regularizing properties for viscosity solutions of second-order fully nonlinear degenerate parabolic equations,, Nonlinear Analysis, 24 (1995), 147.

[21]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,, J. Diff. Eq., 83 (1990), 26.

[22]

R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations,, Arch. Rational Mech., 101 (1988), 1.

[23]

J. J. Manfredi, Nonlinear subelliptic equations on Carnot groups,, Notes of a course given at the Third School on Analysis and Geometry in Metric Spaces, (2003).

[24]

C. Y. Wang, The Aronsson equation for absolute minimizers of $L^\infty$-functionals associated with vector fields satisfying Hörmander's condition,, Trans. Amer. Math. Soc. 359, 1 (2007), 91.

[1]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[2]

Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709

[3]

Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391

[4]

Ludovic Rifford. Ricci curvatures in Carnot groups. Mathematical Control & Related Fields, 2013, 3 (4) : 467-487. doi: 10.3934/mcrf.2013.3.467

[5]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[6]

Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897

[7]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[8]

Olga Kharlampovich and Alexei Myasnikov. Tarski's problem about the elementary theory of free groups has a positive solution. Electronic Research Announcements, 1998, 4: 101-108.

[9]

L’ubomír Baňas, Amy Novick-Cohen, Robert Nürnberg. The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison. Networks & Heterogeneous Media, 2013, 8 (1) : 37-64. doi: 10.3934/nhm.2013.8.37

[10]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[11]

Isabeau Birindelli, Francoise Demengel. The dirichlet problem for singluar fully nonlinear operators. Conference Publications, 2007, 2007 (Special) : 110-121. doi: 10.3934/proc.2007.2007.110

[12]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[13]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[14]

Baojun Bian, Shuntai Hu, Quan Yuan, Harry Zheng. Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5413-5433. doi: 10.3934/dcds.2015.35.5413

[15]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[16]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[17]

Fausto Ferrari, Michele Miranda Jr, Diego Pallara, Andrea Pinamonti, Yannick Sire. Fractional Laplacians, perimeters and heat semigroups in Carnot groups. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 477-491. doi: 10.3934/dcdss.2018026

[18]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[19]

Saugata Bandyopadhyay, Bernard Dacorogna, Olivier Kneuss. The Pullback equation for degenerate forms. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 657-691. doi: 10.3934/dcds.2010.27.657

[20]

E. N. Dancer, Danielle Hilhorst, Shusen Yan. Peak solutions for the Dirichlet problem of an elliptic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 731-761. doi: 10.3934/dcds.2009.24.731

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]