\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The classification of constant weighted curvature curves in the plane with a log-linear density

Abstract / Introduction Related Papers Cited by
  • In this paper, we classify the class of constant weighted curvature curves in the plane with a log-linear density, or in other words, classify all traveling curved fronts with a constant forcing term in $R^2.$ The classification gives some interesting phenomena and consequences including: the family of curves converge to a round point when the weighted curvature of curves (or equivalently the forcing term of traveling curved fronts) goes to infinity, a simple proof for a main result in [13] as well as some well-known facts concerning to the isoperimetric problem in the plane with density $e^y.$
    Mathematics Subject Classification: Primary 53C44, 53A04; Secondary 53C21, 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. A. S. Aarons, Mean curvature flow with a forcing term in Minkowski space, Calc. Var. Partial Differential Equations, 25 (2006), 205-246.doi: 10.1007/s00526-005-0351-8.

    [2]

    C. Carroll, A. Jacob, C. Quinn and R. Walters, The isoperimetric problem on planes with density, Bull. Aust. Math. Soc., 78 (2008), 177-197.doi: 10.1017/S000497270800052X.

    [3]

    A. Cañete, M. Miranda and D. Vittone, Some isoperimetric problems in planes with density, J. Geo. Anal., 20 (2010), 243-290.doi: 10.1007/s12220-009-9109-4.

    [4]

    I. Corwin, N. Hoffman, S. Hurder, V. Sesum and Y. Xu, Differential geometry of manifolds with density, Rose-Hulman Und. Math. J., 7 (2006).

    [5]

    I. Corwin and F. Morgan, The Gauss-Bonnet formula on surfaces with densities, Involve, 4 (2011), 199-202.doi: 10.2140/involve.2011.4.199.

    [6]

    J. Dahlberg, A. Dubbs, E. Newkirk and H. Tran, Isoperimetric regions in the plane with density $r^p$, New York J. Math., 16 (2010) 31-51.

    [7]

    K. Ecker and G. Huisken, Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes, Comm. Math. Phys., 135 (1991), 595-613.

    [8]

    D. T. Hieu and N. M. Hoang, Ruled minimal surfaces in $R^3$ with density $e^z$, Pacific J. Math., 243 (2009), 277-285.doi: 10.2140/pjm.2009.243.277.

    [9]

    D. T. Hieu, Some calibrated surfaces in manifolds with density, J. Geom. Phys., 61 (2011), 1625-1629.doi: 10.1016/j.geomphys.2011.04.005.

    [10]

    G. Huisken and C. Sinestrari, Mean curvature flow singularities for mean convex surfaces, Calc. Var. PDE, 8 (1999), 1-14.doi: 10.1007/s005260050113.

    [11]

    G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183 (1999), 45-70.doi: 10.1007/BF02392946.

    [12]

    H. Jian, H. Ju, Y. Liu and W. Sun, Symmetry of translating solutions to mean curvature flows, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 2006-2016.doi: 10.1016/S0252-9602(10)60191-9.

    [13]

    H. Jian, H. Ju, Y. Liu and W. Sun, Traveling fronts of curve flow with external force field, Commun. Pure Appl. Anal., 9 (2010), 975-986.doi: 10.3934/cpaa.2010.9.975.

    [14]

    H. Ju, J. Lu and H. Jian, Translating solutions to mean curvature flow with a forcing term in Minkowski space, Commun. Pure Appl. Anal., 9 (2010), 963-973.doi: 10.3934/cpaa.2010.9.963.

    [15]

    Q. Maurmann and F. Morgan, Isoperimetric comparison theorems for manifolds with density, Calc. Var. PDE, 36 (2009), 1-5.doi: 10.1007/s00526-008-0219-9.

    [16]

    F. Morgan, Manifolds with density, Notices Amer. Math. Soc., 52 (2005), 853-858.

    [17]

    F. Morgan, Myers' Theorem with density, Kodai Math. J., 29 (2006), 454-460.doi: 10.2996/kmj/1162478772.

    [18]

    F. Morgan, Geometric Measure Theory: a Beginner's Guide, $4^{th}$ edition, Academic Press, 2009.

    [19]

    F. Morgan, Manifolds with density and Perelman's proof of the Poincaré Conjecture, Amer. Math. Monthly, 116 (2009), 134-142.doi: 10.4169/193009709X469896.

    [20]

    H. Ninomiya and M. Taniguchi, Traveling curved fronts of a mean curvature flow with constant driving force, Free boundary problems: theory and applications, I (Chiba, 1999). 206-221, GAKUTO Internat. Ser. Math. Sci. Appl., 13, Gakkotosho, Tokyo, 2000.

    [21]

    C. Rosales, A. Cañete, V. Bayle and F. Morgan, On the isoperimetric problem in Euclidean space with density, Calc. Var. PDE, 31 (2008), 27-46.doi: 10.1007/s00526-007-0104-y.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return