\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval

Abstract / Introduction Related Papers Cited by
  • We study the existence and the uniqueness of a {\bf positive connection}, that is a stationary solution connecting the boundary data, for the initial-boundary value problem for the viscous shallow water system \begin{eqnarray} \partial_t u + \partial_x v=0, \partial_t v+\partial_x( \frac{v^2}{u}+ P(u))= \varepsilon\partial_x ( u \partial_x(\frac{v}{u})) \end{eqnarray} in a bounded interval $(-l,l)$ of the real line. We firstly consider the general case where the term of pressure $P(u)$ satisfies \begin{eqnarray} P(0)=0, P(+\infty)=+\infty, P'(u) \quad and \quad P''(u)>0 \ \forall u >0, \end{eqnarray} and then we show properties of the steady state in the relevant case $P(u)=\kappa u^{\gamma}$, $\gamma>1$. The viscous Saint-Venant system, corresponding to $\gamma=2$, fits in the general framework.
    Mathematics Subject Classification: Primary: 35A01, 35L50; Secondary: 34A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Bastin, J. M. Coron and B. D'Andréa-Novel, On Lyapunov stability of linearized Saint-Venant equations for a sloping channel, Netw. Heterog. Media, 4 (2009), 177-187.doi: 10.3934/nhm.2009.4.177.

    [2]

    D. Bresch, B. Desjardins B. and G. Métivier, Recent mathematical results and open problems about shallow water equations, Analysis and Simulation of Fluid Dynamics, Series in Advances in Mathematical Fluid Mechanics, Birkhauser Basel, (2006), pp. 15-31.doi: 10.1007/978-3-7643-7742-7_2.

    [3]

    S. A. Chin-Bing, P. M. Jordam and A. Warm-Varnas, A note on the viscous, 1D shallow water equation: Traveling wave phenomena, Mech. Research Comm., 38 (2011), 382-387.

    [4]

    C.M. Dafermos, Hyperbolic Systems of Conservation Laws, Springer Verlag, New York, 1997.

    [5]

    A. Diagne, G. Bastin and J. M. Coron, Lyapunov exponential stability of linear hyperbolic systems of balance laws, Preprint of the 18th IFAC World Congress, Milano (Italy) August 28-September 2, 2011.

    [6]

    J. F. Gerbeau and B. Perthame, Derivation of viscous saint-venant system for laminar shallow water; numerical validation, Disc. Cont. Dyn. Syst., 1, (2001), 89-102.doi: 10.3934/dcdsb.2001.1.89.

    [7]

    S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169-194.doi: 10.1017/S0308210500018308.

    [8]

    H.-L. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281 (2008), 401-444.doi: 10.1007/s00220-008-0495-4.

    [9]

    R. Lian, Z. Guo and H.-L. Li, Dynamical behaviors for 1D compressibe Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 248 (2010), 1926-1954.doi: 10.1016/j.jde.2009.11.029.

    [10]

    P. L. Lions, Topics in Fluids Mechanics, Vol. 1 and 2, Oxford Lectures Series in Math. and its Appl., Oxford 1996 and 1998.

    [11]

    P. L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys., 163 (1994), 415-431.

    [12]

    P. L Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7 (1994), 169-191.doi: 10.2307/2152725.

    [13]

    G. Lyng and K. Zumbrun, One-dimensional stability of viscous strong detonation waves, Ration. Mech. Anal., 173 (2004), 213-277.doi: 10.1007/s00205-004-0317-6.

    [14]

    C. Mascia, A dive into shallow water, Riv. Mat. Univ. Parma, 1 (2010), 77-149.

    [15]

    C. Mascia and F. Rousset, Asymptotic stability of steady-states for saint-venant equations with real viscosity, in Analysis and simulation of fluid dynamics, (2007), 155-162, Adv. Math. Fluid Mech., Birkhauser, Basel.doi: 10.1007/978-3-7643-7742-7_9.

    [16]

    C. Mascia and K. Zumbrun, Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Ration. Mech. Anal., 172 (2004), 93-131.doi: 10.1007/s00205-003-0293-2.

    [17]

    C. Mascia and K. Zumbrun, Stability of viscous shock profiles for dissipative symmetric hyperbolic-parabolic systems, Comm. Pure Appl. Math., 52 (2004), 841-876.doi: 10.1002/cpa.20023.

    [18]

    J.C. Barré De Saint-Venant, Théorie du mouvement non permanent des eaux, avec application aux crues des riviéres et á l'introduction des marées dans leur lit, C. R. Acad. Sci. Paris Sér. I Math., 73 (1871), 147-154.

    [19]

    W. Wang and C.J. Xu, The Cauchy problem for viscous Shallow Water flows, Rev. Mate. Iber., 21 (2005), 1-24.doi: 10.4171/RMI/412.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(134) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return