September  2014, 13(5): 1907-1933. doi: 10.3934/cpaa.2014.13.1907

Reaction-diffusion equations with a switched--off reaction zone

1. 

Institut für Mathematik, Goethe Universität, D-60054 Frankfurt am Main

2. 

Institute of Mathematics, Johann Wolfgang Goethe University, 60054 Frankfurt (Main)

3. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074

Received  March 2013 Revised  May 2013 Published  June 2014

Reaction-diffusion equations are considered on a bounded domain $\Omega$ in $\mathbb{R}^d$ with a reaction term that is switched off at a point in space when the solution first exceeds a specified threshold and thereafter remains switched off at that point, which leads to a discontinuous reaction term with delay. This problem is formulated as a parabolic partial differential inclusion with delay. The reaction-free region forms what could be called dead core in a biological sense rather than that used elsewhere in the literature for parabolic PDEs. The existence of solutions in $L^2(\Omega)$ is established firstly for initial data in $L^{\infty}(\Omega)$ and in $W_0^{1,2}(\Omega)$ by different methods, with $d$ $=$ $2$ or $3$ in the first case and $d$ $\geq$ $2$ in the second. Solutions here are interpreted in the sense of integral or strong solutions of nonhomogeneous linear parabolic equations in $L^2(\Omega)$ that are generalised to selectors of the corresponding nonhomogeneous linear parabolic differential inclusions and are shown to be equivalent under the assumptions used in the paper.
Citation: Peter E. Kloeden, Thomas Lorenz, Meihua Yang. Reaction-diffusion equations with a switched--off reaction zone. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1907-1933. doi: 10.3934/cpaa.2014.13.1907
References:
[1]

R. A. Adams and J. F. Fournier, Sobolev Spaces,, second edition, (2003). Google Scholar

[2]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis,, Birkh\, (1990). Google Scholar

[3]

J.-P. Aubin and A. Cellina, Differential Inclusions. Set-valued Maps and Viability Theory,, Springer, (1984). doi: 10.1007/978-3-642-69512-4. Google Scholar

[4]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces,, Editura Academiei Republicii Socialiste Rom\^ania, (1976). Google Scholar

[5]

Ph. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach,, \emph{C. R. Acad. Sci. Paris S\'er. A-B}, 274 (1972). Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011). Google Scholar

[7]

C. Castaing, L. A. Faik and A. Salvadori, Evolution equations governed by m-accretive and subdifferential operators with delay,, \emph{Int. J. Appl. Math.}, 2 (2000), 1005. Google Scholar

[8]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, Lecture Notes in Mathematics, (1977). Google Scholar

[9]

Xinfu Chen, J.-S. Guo and Bei Hu, Dead-core rates for the porous medium equation with a strong absorption,, \emph{Discrete and Continuous Dynamical Systems, (). doi: 10.3934/dcdsb.2012.17.1761. Google Scholar

[10]

E. B. Davies, Heat Kernels and Spectral Theory,, Cambridge Tracts in Mathematics, (1989). doi: 10.1017/CBO9780511566158. Google Scholar

[11]

J. Diestel and Jr. J. J. Uhl, Vector Measures,, American Mathematical Society, (1977). Google Scholar

[12]

A. Gavioli and L. Malaguti, Viable solutions of differential inclusions with memory in Banach spaces,, \emph{Portugal. Math.}, 57 (2000), 203. Google Scholar

[13]

J.-S. Guo and P. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up,, \emph{Math. Ann.}, 331 (2005), 651. doi: 10.1007/s00208-004-0601-7. Google Scholar

[14]

J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption,, \emph{Tohoku Math. J.}, 60 (2008), 37. Google Scholar

[15]

Shouchuan Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Theory,, Kluwer Academic Publishers, (1997). doi: 10.1007/978-1-4615-6359-4. Google Scholar

[16]

Shouchuan Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. II, Applications,, Kluwer Academic Publishers, (2000). doi: 10.1007/978-1-4615-4665-8_17. Google Scholar

[17]

A. G. Ibrahim, On differential inclusions with memory in Banach spaces,, \emph{Proc. Math. Phys. Soc. Egypt}, 67 (1992), 1. Google Scholar

[18]

A. G. Ibrahim, Topological properties of solution sets for functional differential inclusions governed by a family of operators,, \emph{Portugal. Math.}, 58 (2001), 255. Google Scholar

[19]

O. V. Kapustyan, V. S. Mel'nik, J. Valero and V. V. Yasinsky, Global Attractors of Multi-valued Dynamical Systems and Evolution Equations without Uniqueness,, National Academy of Sciences of Ukraine, (2008). Google Scholar

[20]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type,, Translations of Mathematical Monographs 23, (1968). Google Scholar

[21]

Ch. B. Morrey, Multiple Integrals in the Calculus of Variations,, Springer, (1966). Google Scholar

[22]

N. Pavel, Nonlinear Evolution Operators and Semigroups. Applications to Partial Differential Equations,, Lecture Notes in Mathematics, (1260). Google Scholar

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[24]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,, Birkh\, (2007). Google Scholar

[25]

H. L. Royden, Real Analysis,, third edition, (1988). Google Scholar

[26]

G. V. Smirnov, Introduction to the Theory of Differential Inclusions,, American Mathematical Society, (2002). Google Scholar

[27]

A. A. Tolstonogov, Solutions of evolution inclusions. I,, \emph{Siberian Math. J.}, 33 (1993), 500. doi: 10.1007/BF00970899. Google Scholar

[28]

A. A. Tolstonogov and Ya. I. Umanskiĭ, Solutions of evolution inclusions. II,, \emph{ Siberian Math. J.}, 33 (1993), 693. doi: 10.1007/BF00971135. Google Scholar

[29]

A. A. Tolstonogov, Differential Inclusions in a Banach Space,, Kluwer Academic Publishers, (2000). doi: 10.1007/978-94-015-9490-5. Google Scholar

[30]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,, Graduate Texts in Mathematics, (1989). doi: 10.1007/978-1-4612-1015-3. Google Scholar

show all references

References:
[1]

R. A. Adams and J. F. Fournier, Sobolev Spaces,, second edition, (2003). Google Scholar

[2]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis,, Birkh\, (1990). Google Scholar

[3]

J.-P. Aubin and A. Cellina, Differential Inclusions. Set-valued Maps and Viability Theory,, Springer, (1984). doi: 10.1007/978-3-642-69512-4. Google Scholar

[4]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces,, Editura Academiei Republicii Socialiste Rom\^ania, (1976). Google Scholar

[5]

Ph. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach,, \emph{C. R. Acad. Sci. Paris S\'er. A-B}, 274 (1972). Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011). Google Scholar

[7]

C. Castaing, L. A. Faik and A. Salvadori, Evolution equations governed by m-accretive and subdifferential operators with delay,, \emph{Int. J. Appl. Math.}, 2 (2000), 1005. Google Scholar

[8]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, Lecture Notes in Mathematics, (1977). Google Scholar

[9]

Xinfu Chen, J.-S. Guo and Bei Hu, Dead-core rates for the porous medium equation with a strong absorption,, \emph{Discrete and Continuous Dynamical Systems, (). doi: 10.3934/dcdsb.2012.17.1761. Google Scholar

[10]

E. B. Davies, Heat Kernels and Spectral Theory,, Cambridge Tracts in Mathematics, (1989). doi: 10.1017/CBO9780511566158. Google Scholar

[11]

J. Diestel and Jr. J. J. Uhl, Vector Measures,, American Mathematical Society, (1977). Google Scholar

[12]

A. Gavioli and L. Malaguti, Viable solutions of differential inclusions with memory in Banach spaces,, \emph{Portugal. Math.}, 57 (2000), 203. Google Scholar

[13]

J.-S. Guo and P. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up,, \emph{Math. Ann.}, 331 (2005), 651. doi: 10.1007/s00208-004-0601-7. Google Scholar

[14]

J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption,, \emph{Tohoku Math. J.}, 60 (2008), 37. Google Scholar

[15]

Shouchuan Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Theory,, Kluwer Academic Publishers, (1997). doi: 10.1007/978-1-4615-6359-4. Google Scholar

[16]

Shouchuan Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. II, Applications,, Kluwer Academic Publishers, (2000). doi: 10.1007/978-1-4615-4665-8_17. Google Scholar

[17]

A. G. Ibrahim, On differential inclusions with memory in Banach spaces,, \emph{Proc. Math. Phys. Soc. Egypt}, 67 (1992), 1. Google Scholar

[18]

A. G. Ibrahim, Topological properties of solution sets for functional differential inclusions governed by a family of operators,, \emph{Portugal. Math.}, 58 (2001), 255. Google Scholar

[19]

O. V. Kapustyan, V. S. Mel'nik, J. Valero and V. V. Yasinsky, Global Attractors of Multi-valued Dynamical Systems and Evolution Equations without Uniqueness,, National Academy of Sciences of Ukraine, (2008). Google Scholar

[20]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type,, Translations of Mathematical Monographs 23, (1968). Google Scholar

[21]

Ch. B. Morrey, Multiple Integrals in the Calculus of Variations,, Springer, (1966). Google Scholar

[22]

N. Pavel, Nonlinear Evolution Operators and Semigroups. Applications to Partial Differential Equations,, Lecture Notes in Mathematics, (1260). Google Scholar

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[24]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,, Birkh\, (2007). Google Scholar

[25]

H. L. Royden, Real Analysis,, third edition, (1988). Google Scholar

[26]

G. V. Smirnov, Introduction to the Theory of Differential Inclusions,, American Mathematical Society, (2002). Google Scholar

[27]

A. A. Tolstonogov, Solutions of evolution inclusions. I,, \emph{Siberian Math. J.}, 33 (1993), 500. doi: 10.1007/BF00970899. Google Scholar

[28]

A. A. Tolstonogov and Ya. I. Umanskiĭ, Solutions of evolution inclusions. II,, \emph{ Siberian Math. J.}, 33 (1993), 693. doi: 10.1007/BF00971135. Google Scholar

[29]

A. A. Tolstonogov, Differential Inclusions in a Banach Space,, Kluwer Academic Publishers, (2000). doi: 10.1007/978-94-015-9490-5. Google Scholar

[30]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,, Graduate Texts in Mathematics, (1989). doi: 10.1007/978-1-4612-1015-3. Google Scholar

[1]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[2]

Angela Alberico, Teresa Alberico, Carlo Sbordone. Planar quasilinear elliptic equations with right-hand side in $L(\log L)^{\delta}$. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1053-1067. doi: 10.3934/dcds.2011.31.1053

[3]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[4]

Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure & Applied Analysis, 2010, 9 (2) : 397-411. doi: 10.3934/cpaa.2010.9.397

[5]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083

[6]

Aníbal Rodríguez-Bernal, Alejandro Vidal-López. A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (2) : 635-644. doi: 10.3934/cpaa.2014.13.635

[7]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[8]

Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815

[9]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[10]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[11]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[12]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[13]

Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209

[14]

Chin-Chin Wu, Zhengce Zhang. Dead-core rates for the heat equation with a spatially dependent strong absorption. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2203-2210. doi: 10.3934/dcdsb.2013.18.2203

[15]

Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761

[16]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[17]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

[18]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[19]

Hideo Deguchi. A reaction-diffusion system arising in game theory: existence of solutions and spatial dominance. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3891-3901. doi: 10.3934/dcdsb.2017200

[20]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]