Advanced Search
Article Contents
Article Contents

Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case

Abstract / Introduction Related Papers Cited by
  • In this work, we present a Hodge-type decomposition for variable exponent spaces of Clifford-valued functions, where one of the components is the kernel of the parabolic-type Dirac operator.
    Mathematics Subject Classification: Primary: 30G35; Secondary: 35Q41, 35A08, 46E35, 46E30, 34L40.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Almeida and P. Hästö, Interpolation in variable exponent spaces, Rev. Mat. Complut., in press. doi: 10.1007/s13163-013-0135-1.


    E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259.doi: 10.1007/s00205-002-0208-7.


    R. Artino and J. Barros-Neto, Hypoelliptic Boundary-value Problems, Lectures Notes in Pure and Applied Mathematics-Vol.53, Marcel Dekker, New York-Basel, 1980.


    J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der mathematischen Wissenschaften-Vol.223, Springer-Verlag, Berlin-Heidelberg-New York, 1976.


    P. Cerejeiras and N. Vieira, Regularization of the non-stationary Schrödinger operator, Math. Meth. in Appl. Sc., 32 (2009), 535-555.doi: 10.1002/mma.1050.


    P. Cerejeiras and N. Vieira, Factorization of the non-stationary Schrödinger operator, Adv. Appl. Clifford Algebr., 17 (2007), 331-341.doi: 10.1007/s00006-007-0039-6.


    P. Cerejeiras, U. Kähler and F. Sommen, Parabolic Dirac operators and the Navier-Stokes equations over time-varying domains, Math. Meth. in Appl. Sc., 28 (2005), 1715-1724.doi: 10.1002/mma.634.


    Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.doi: 10.1137/050624522.


    R. Delanghe, F. Sommen and V. Souček, Clifford Algebras and Spinor-valued Functions. A Function Theory for the Dirac Operator, Mathematics and its Applications-Vol.53, Kluwer Academic Publishers, Dordrecht etc., 1992.doi: 10.1007/978-94-011-2922-0.


    L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolec Spaces with Variable Exponents, Springer-Verlang, Berlin, 2011.doi: 10.1007/978-3-642-18363-8.


    L. Diening, D. Lengeler and M. Ružička, The Stokes and Poisson problem in variable exponents spaces, Complex Var. Elliptic Equ., 56 (2011), 789-811.doi: 10.1080/17476933.2010.504843.


    R. Fortini, D. Mugnai and P. Pucci, Maximum principles for anisotropic elliptic inequalities, Nonlinear Anal., 70 (2009), 2917-2929.doi: 10.1016/j.na.2008.12.030.


    K. Gürlebeck and W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice, Wiley, Chichester, 1997.


    L. Hormander, On the regularity of the solutions of boundary problems, Acta. Math., 99 (1958), 225-264.


    R. F. Hoskins and J.S. Pinto, Theories of Generalised Functions - Distributions, Ultradistributions and other Generalised Functions, Horwood Publishing, Chichester, 2005.doi: 10.1533/9780857099488.


    T. Kato, Nonlinear Schrödinger equation, in Schrödinger Operators, (eds. H. Holden and A. Jensen), Lectures Notes in Physics 345, Springer, Berlin, 1989.doi: 10.1007/3-540-51783-9_22.


    O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.


    R. S. Kraußhar and N. Vieira, The Schrödinger equation on cylinders and the $n$-torus, J. Evol. Equ., 11 (2011), 215-237.doi: 10.1007/s00028-010-0089-4.


    N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108.doi: 10.1103/PhysRevE.66.056108.


    N. Laskin, Fractional quantum mechanics, Phy. Rev. E, 62 (2000), 3135-3145.


    N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.doi: 10.1016/S0375-9601(00)00201-2.


    S. G. Mikhlin and S. Prössdorf, Singular Integral Operators, Springer-Verlag, Berlin etc., 1986.doi: 10.1007/978-3-642-61631-0.


    H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950.


    H. Nakano, Topology of Linear Topological Spaces, Maruzen Co. Ltd., Tokyo, 1951.


    M. Sanchón and J. M. Urbano, Entropy solutions for the p(x)-Laplace equation, Trans. Amer. Math. Soc., 361 (2009), 6387-6405.doi: 10.1090/S0002-9947-09-04399-2.


    S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integr. Transf. Spec. F., 16 (2005), 461-482.doi: 10.1080/10652460412331320322.


    W. Sprößig, On Helmotz decompositions and their generalizations-an overview, Math. Meth. in Appl. Sc., 33 (2009), 374-383.doi: 10.1002/mma.1212.


    T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics-Vol.106, American Mathematical Society, 2006.


    G. Velo, Mathematical Aspects of the nonlinear Schrödinger Equation, in Proceedings of the Euroconference on nonlinear Klein-Gordon and Schrdinger systems: theory and applications (eds. L. Vázquez et al.), World Scientific, Singapore, (1996), 39-67.

  • 加载中

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint