2014, 13(6): 2609-2639. doi: 10.3934/cpaa.2014.13.2609

Pattern formation and dynamic transition for magnetohydrodynamic convection

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47906, United States

2. 

Department of Mathematics, Indiana University, Bloomington, IN 47405

Received  June 2013 Revised  November 2013 Published  July 2014

The main objective of this paper is to describe the dynamic transition of the incompressible MHD equations in a three dimensional (3D) rectangular domain from a perspective of pattern formation. We aim to classify the formations of roll, rectangle and hexagonal patterns at the first critical Rayleigh number.

When the first eigenvalue of the linearized operator is real and simple, the critical eigenvector has either a roll structure or a rectangle structure. In both cases we find that the transition is continuous or jump depending on a non-dimensional number computed explicitly in terms of system parameters.

When the critical eigenspace has dimension two corresponding to two real eigenvalues, we study the transitions of hexagonal pattern. In this case, we show that all three types of transitions--continuous, jump and mixed--can occur in eight different transition scenarios.

Finally, we study the case where the first eigenvalue is complex, simple and corresponding eigenvector has a roll structure. In this case, we find that both continuous and jump transitions are possible.

We give several bounds on the parameters which separate the parameter space into regions of different transition scenarios.
Citation: Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609
References:
[1]

Subrahmanyan Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,, Clarendon Press, (1961).

[2]

Michael C. Cross and Pierre C. Hohenberg, Pattern formation outside of equilibrium,, \emph{Reviews of Modern Physics}, 65 (1993), 851.

[3]

Alexander V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics,, World Scientific, (1998).

[4]

Ernst L. Koschmieder, Bénard Cells and Taylor Vortices,, Cambridge University Press, (1993).

[5]

Tian Ma and Shouhong Wang, Bifurcation Theory and Applications,, Hackensack, (2005). doi: 10.1142/9789812701152.

[6]

Tian Ma and Shouhong Wang, Phase Transition Dynamics,, Springer-Verlag, (2013).

[7]

M. R. E. Proctor and N. O. Weiss, Magnetoconvection,, \emph{Reports on Progress in Physics}, 45 (1982), 1317.

[8]

Roger Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, 2$^{nd}$ edition, (1997).

show all references

References:
[1]

Subrahmanyan Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,, Clarendon Press, (1961).

[2]

Michael C. Cross and Pierre C. Hohenberg, Pattern formation outside of equilibrium,, \emph{Reviews of Modern Physics}, 65 (1993), 851.

[3]

Alexander V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics,, World Scientific, (1998).

[4]

Ernst L. Koschmieder, Bénard Cells and Taylor Vortices,, Cambridge University Press, (1993).

[5]

Tian Ma and Shouhong Wang, Bifurcation Theory and Applications,, Hackensack, (2005). doi: 10.1142/9789812701152.

[6]

Tian Ma and Shouhong Wang, Phase Transition Dynamics,, Springer-Verlag, (2013).

[7]

M. R. E. Proctor and N. O. Weiss, Magnetoconvection,, \emph{Reports on Progress in Physics}, 45 (1982), 1317.

[8]

Roger Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, 2$^{nd}$ edition, (1997).

[1]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[2]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[3]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[4]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[5]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[6]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[7]

Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056

[8]

Hyung Ju Hwang, Thomas P. Witelski. Short-time pattern formation in thin film equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 867-885. doi: 10.3934/dcds.2009.23.867

[9]

H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705

[10]

Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111

[11]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[12]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[13]

Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (II): interfacial instability and pattern formation at early stage of growth. Communications on Pure & Applied Analysis, 2004, 3 (3) : 527-543. doi: 10.3934/cpaa.2004.3.527

[14]

Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255

[15]

Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure & Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021

[16]

Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035

[17]

Tone Arnold, Myrna Wooders. Dynamic club formation with coordination. Journal of Dynamics & Games, 2015, 2 (3/4) : 341-361. doi: 10.3934/jdg.2015010

[18]

Daniel Wetzel. Pattern analysis in a benthic bacteria-nutrient system. Mathematical Biosciences & Engineering, 2016, 13 (2) : 303-332. doi: 10.3934/mbe.2015004

[19]

Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 547-559. doi: 10.3934/mbe.2009.6.547

[20]

Chufen Wu, Dongmei Xiao, Xiao-Qiang Zhao. Asymptotic pattern of a migratory and nonmonotone population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1171-1195. doi: 10.3934/dcdsb.2014.19.1171

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]