2014, 13(1): 273-291. doi: 10.3934/cpaa.2014.13.273

Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity

1. 

University Tunis El Manar, Faculty of Sciences of Tunis, Department of Mathematics, 2092, Tunis, Tunisia

Received  December 2012 Revised  May 2013 Published  July 2013

Extending previous works [47, 27, 30], we consider in even space dimensions the initial value problems for some high-order semi-linear wave and Schrödinger type equations with exponential nonlinearity. We obtain global well-posedness in the energy space.
Citation: Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273
References:
[1]

S. Adachi and K. Tanaka, Trudinger type inequalities in $R^N$ and their best exponent,, Proc. Amer. Math. Society, 128 (1999), 2051. doi: 10.1090/S0002-9939-99-05180-1.

[2]

A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat, 8 (2004), 1. doi: MR204459.

[3]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case,, J. Amer. Math. Soc., 12 (1999), 145. doi: 10.1090/S0894-0347-99-00283-0.

[4]

T. Cazenave, An introduction to nonlinear Schrödinger equations,, Textos de Metodos Matematicos, 26 (1996).

[5]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonl. Anal. - TMA, 14 (1990), 807. doi: 10.1016/0362-546X(90)90023-A.

[6]

J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions,, J. Hyperbolic Differ. Equ, 6 (2009), 549. doi: 10.1142/S0219891609001927.

[7]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, Ann. Math., 167 (2008), 767. doi: 10.4007/annals.2008.167.767.

[8]

G. M. Constantine and T. H. Savitis, A multivariate Faa Di Bruno formula with applications,, T. A. M. S, 348 (1996), 503.

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates,, A. M. S, 120 (1998), 955. doi: 10.1016/0362-546X(90)90023-A.

[10]

V. A. Galaktionov and S. I. Pohozaev, Blow-up and critical exponents for nonlinear hyperbolic equations,, Nonlinear Analysis, 53 (2003), 453. doi: 10.1016/S0362-546X(02)00311-5.

[11]

J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation,, Math. Z, 189 (1985), 487. doi: 10.1007/BF01168155.

[12]

M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity,, Annal. of Math., 132 (1990), 485. doi: 10.2307/1971427.

[13]

E. Hebey and B. Pausader, An introduction to fourth-order nonlinear wave equations,, (2008)., (2008).

[14]

S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear $2D$ Klein-Gordon equation with exponential type nonlinearity,, Comm. Pure App. Math, 59 (2006), 1639. doi: 10.1002/cpa.20127.

[15]

S. Ibrahim, M. Majdoub and N. Masmoudi, Instability of $H^1$-supercritical waves,, C. R. Acad. Sci. Paris, 345 (2007), 133. doi: 10.1016/j.crma.2007.06.008.

[16]

S. Ibrahim, M. Majdoub, N. Masmoudi and K. Nakanishi, Scattering for the $2D$ energy critical wave equation,, Duke Math., 150 (2009), 287. doi: 10.1215/00127094-2009-053.

[17]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion fourth-order nonlinear Schrödinger equations,, Phys. Rev. E, 53 (1996), 1336. doi: 10.1103/PhysRevE.53.R1336.

[18]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion,, Phys D, 144 (2000), 194. doi: 10.1016/S0167-2789(00)00078-6.

[19]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645. doi: 10.1007/s11511-008-0031-6.

[20]

J. Kim, A. Arnold and X. Yao, Global estimates of fundamental solutions for higher-order Schrödinger equations,, \arXiv{0807.0690v2}., ().

[21]

J. Kim, A. Arnold and X. Yao, Estimates for a class of oscillatory integrals and decay rates for wave-type equations,, \arXiv{1109.0452v2}, ().

[22]

S. P. Levandosky, Stability and instability of fourth-order solitary waves,, J. Dynam. Differential Equations, 10 (1998), 151. doi: 1040-7294/98/0100-0151S15.00/0.

[23]

S. P. Levandosky, Deacy estimates for fourth-order wave equations,, J. Differential Equations, 143 (1998), 360. doi: 10.1006/jdeq.1997.3369.

[24]

S. P. Levandosky and W. A. Strauss, Time decay for the nonlinear beam equation,, Methods and Applications of Analysis, 7 (2000), 479. doi: Zbl 1212.35476.

[25]

H. A Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{t t} = ..Au + F(u)$,, T. A. M. S, 192 (1974), 1.

[26]

G. Lebeau, Nonlinear optics and supercritical wave equation,, Bull. Soc. R. Sci. Li\`ege, 70 (2001), 267.

[27]

G. Lebeau, Perte de régularité pour l'équation des ondes surcritique,, Bull. Soc. Math. France, 133 (2005), 145.

[28]

J. L. Lions, Une remarque sur les problèmes d'évolution non linéaires dans des domaines non cylindriques,, Revue Roumaine Math. Pur. Appl., 9 (1964), 129.

[29]

O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth,, Georgian Math. J., 17 (2010), 543. doi: 10.1515/gmj.2010.026.

[30]

O. Mahouachi and T. Saanouni, Well and ill posedness issues for a class of $2D$ wave equation with exponential nonlinearity,, J. P. D. E, 24 (2011), 361. doi: 10.4208/jpde.v24.n4.7.

[31]

M. Majdoub and T. Saanouni, Global well-posedness of some critical fourth-order wave and Schrödinger equation,, preprint., ().

[32]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth-order in the radial case,, \arXiv{0807.0690v2 }., ().

[33]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth-order in dimensions $d\geq9$,, \arXiv{0807.0692v2}., ().

[34]

J. Moser, A sharp form of an inequality of N. Trudinger,, Ind. Univ. Math. J., 20 (1971), 1077.

[35]

M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order,, Journal of Functional Analysis, 155 (1998), 364. doi: 10.1006/jfan.1997.3236.

[36]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth,, Math. Z, 231 (1999), 479. doi: 10.1007/PL00004737.

[37]

T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem,, J. Math. Anal. Appl., 155 (1991), 531.

[38]

T. Ozawa, On critical cases of Sobolev's inequalities,, J. Funct. Anal., 127 (1995), 259. doi: 10.1006/jfan.1995.1012.

[39]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case,, Dynamics of PDE, 4 (2007), 197. doi: 01/2007.4:197-225.

[40]

B. Pausader, The cubic fourth-order Schrödinger equation,, Journal of Functional Analysis, 256 (2009), 2473. doi: 10.1016/j.jfa.2008.11.009.

[41]

B. Pausader, Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations,, J. Differential Equations, 241 (2007), 237. doi: 10.1016/j.jde.2007.06.001.

[42]

B. Pausader and W. Strauss, Analyticity of the scattering operator for the beam equation,, Discrete Contin. Dyn. Syst., 25 (2009), 617. doi: 10.3934/dcds.2009.25.617.

[43]

L. Peletier and W. C. Troy, Higher order models in Physics and Mechanics,, Prog in Non Diff Eq and App, 45 (2001).

[44]

B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $R^2$,, J. Funct. Analysis, 219 (2004), 340. doi: 10.1016/j.jfa.2004.06.013.

[45]

B. Ruf and S. Sani, Sharp Adams-type inequalities in $R^n$,, Trans. Amer. Math. Soc., 365 (2013), 645. doi: 10.1090/S0002-9947-2012-05561-9.

[46]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $R^{1+4}$,, Amer. J. Math., 129 (2007), 1.

[47]

T. Saanouni, Global well-posedness and scattering of a 2D Schrödinger equation with exponential growth,, Bull. Belg. Math. Soc., 17 (2010), 441.

[48]

T. Saanouni, Decay of Solutions to a $2D$ Schrödinger Equation,, J. Part. Diff. Eq., 24 (2011), 37. doi: 10.4208/jpde.v24.n1.3.

[49]

T. Saanouni, Scattering of a $2D$ Schrödinger equation with exponential growth in the conformal space,, Math. Meth. Appl. Sci, 33 (2010), 1046. doi: 10.1002/mma.1237.

[50]

T. Saanouni, Remarks on the semilinear Schrödinger equation,, J. Math. Anal. Appl., 400 (2013), 331. doi: 10.1016/j.jmaa.2012.11.037.

[51]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.

[52]

Shangbin Cui and Cuihua Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s(\mathbbR^n)$ and applications,, Nonlinear Analysis, 67 (2007), 687. doi: 10.1016/j.na.2006.06.020.

[53]

J. Shatah et M. Struwe, Well-posedness in the energy space for semilinear wave equation with critical growth,, IMRN, 7 (1994), 303. doi: 10.1155/S1073792894000346.

[54]

W. A. Strauss, On weak solutions of semi-linear hyperbolic equations,, Anais Acad. Brasil. Cienc., 42 (1970), 645.

[55]

M. Struwe, Semilinear wave equations,, Bull. Amer. Math. Soc, 26 (1992), 53.

[56]

M. Struwe, The critical nonlinear wave equation in 2 space dimensions,, J. European Math. Soc. (to appear)., ().

[57]

M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions,, Math. Ann, 350 (2011), 707. doi: 10.1007/s00208-010-0567-6.

[58]

T. Tao, Global well-posedness and scattering for the higher-dimensional energycritical non-linear Schrödinger equation for radial data,, New York J. of Math., 11 (2005), 57.

[59]

N. S. Trudinger, On imbedding into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.

[60]

M. Visan, The defocusing energy-critical nolinear Schrödinger equation in higher dimensions,, Duke. Math. J., 138 (2007), 281. doi: 10.1215/S0012-7094-07-13825-0.

show all references

References:
[1]

S. Adachi and K. Tanaka, Trudinger type inequalities in $R^N$ and their best exponent,, Proc. Amer. Math. Society, 128 (1999), 2051. doi: 10.1090/S0002-9939-99-05180-1.

[2]

A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat, 8 (2004), 1. doi: MR204459.

[3]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case,, J. Amer. Math. Soc., 12 (1999), 145. doi: 10.1090/S0894-0347-99-00283-0.

[4]

T. Cazenave, An introduction to nonlinear Schrödinger equations,, Textos de Metodos Matematicos, 26 (1996).

[5]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonl. Anal. - TMA, 14 (1990), 807. doi: 10.1016/0362-546X(90)90023-A.

[6]

J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions,, J. Hyperbolic Differ. Equ, 6 (2009), 549. doi: 10.1142/S0219891609001927.

[7]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $R^3$,, Ann. Math., 167 (2008), 767. doi: 10.4007/annals.2008.167.767.

[8]

G. M. Constantine and T. H. Savitis, A multivariate Faa Di Bruno formula with applications,, T. A. M. S, 348 (1996), 503.

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates,, A. M. S, 120 (1998), 955. doi: 10.1016/0362-546X(90)90023-A.

[10]

V. A. Galaktionov and S. I. Pohozaev, Blow-up and critical exponents for nonlinear hyperbolic equations,, Nonlinear Analysis, 53 (2003), 453. doi: 10.1016/S0362-546X(02)00311-5.

[11]

J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation,, Math. Z, 189 (1985), 487. doi: 10.1007/BF01168155.

[12]

M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity,, Annal. of Math., 132 (1990), 485. doi: 10.2307/1971427.

[13]

E. Hebey and B. Pausader, An introduction to fourth-order nonlinear wave equations,, (2008)., (2008).

[14]

S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear $2D$ Klein-Gordon equation with exponential type nonlinearity,, Comm. Pure App. Math, 59 (2006), 1639. doi: 10.1002/cpa.20127.

[15]

S. Ibrahim, M. Majdoub and N. Masmoudi, Instability of $H^1$-supercritical waves,, C. R. Acad. Sci. Paris, 345 (2007), 133. doi: 10.1016/j.crma.2007.06.008.

[16]

S. Ibrahim, M. Majdoub, N. Masmoudi and K. Nakanishi, Scattering for the $2D$ energy critical wave equation,, Duke Math., 150 (2009), 287. doi: 10.1215/00127094-2009-053.

[17]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion fourth-order nonlinear Schrödinger equations,, Phys. Rev. E, 53 (1996), 1336. doi: 10.1103/PhysRevE.53.R1336.

[18]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion,, Phys D, 144 (2000), 194. doi: 10.1016/S0167-2789(00)00078-6.

[19]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645. doi: 10.1007/s11511-008-0031-6.

[20]

J. Kim, A. Arnold and X. Yao, Global estimates of fundamental solutions for higher-order Schrödinger equations,, \arXiv{0807.0690v2}., ().

[21]

J. Kim, A. Arnold and X. Yao, Estimates for a class of oscillatory integrals and decay rates for wave-type equations,, \arXiv{1109.0452v2}, ().

[22]

S. P. Levandosky, Stability and instability of fourth-order solitary waves,, J. Dynam. Differential Equations, 10 (1998), 151. doi: 1040-7294/98/0100-0151S15.00/0.

[23]

S. P. Levandosky, Deacy estimates for fourth-order wave equations,, J. Differential Equations, 143 (1998), 360. doi: 10.1006/jdeq.1997.3369.

[24]

S. P. Levandosky and W. A. Strauss, Time decay for the nonlinear beam equation,, Methods and Applications of Analysis, 7 (2000), 479. doi: Zbl 1212.35476.

[25]

H. A Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{t t} = ..Au + F(u)$,, T. A. M. S, 192 (1974), 1.

[26]

G. Lebeau, Nonlinear optics and supercritical wave equation,, Bull. Soc. R. Sci. Li\`ege, 70 (2001), 267.

[27]

G. Lebeau, Perte de régularité pour l'équation des ondes surcritique,, Bull. Soc. Math. France, 133 (2005), 145.

[28]

J. L. Lions, Une remarque sur les problèmes d'évolution non linéaires dans des domaines non cylindriques,, Revue Roumaine Math. Pur. Appl., 9 (1964), 129.

[29]

O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth,, Georgian Math. J., 17 (2010), 543. doi: 10.1515/gmj.2010.026.

[30]

O. Mahouachi and T. Saanouni, Well and ill posedness issues for a class of $2D$ wave equation with exponential nonlinearity,, J. P. D. E, 24 (2011), 361. doi: 10.4208/jpde.v24.n4.7.

[31]

M. Majdoub and T. Saanouni, Global well-posedness of some critical fourth-order wave and Schrödinger equation,, preprint., ().

[32]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth-order in the radial case,, \arXiv{0807.0690v2 }., ().

[33]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth-order in dimensions $d\geq9$,, \arXiv{0807.0692v2}., ().

[34]

J. Moser, A sharp form of an inequality of N. Trudinger,, Ind. Univ. Math. J., 20 (1971), 1077.

[35]

M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order,, Journal of Functional Analysis, 155 (1998), 364. doi: 10.1006/jfan.1997.3236.

[36]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth,, Math. Z, 231 (1999), 479. doi: 10.1007/PL00004737.

[37]

T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem,, J. Math. Anal. Appl., 155 (1991), 531.

[38]

T. Ozawa, On critical cases of Sobolev's inequalities,, J. Funct. Anal., 127 (1995), 259. doi: 10.1006/jfan.1995.1012.

[39]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case,, Dynamics of PDE, 4 (2007), 197. doi: 01/2007.4:197-225.

[40]

B. Pausader, The cubic fourth-order Schrödinger equation,, Journal of Functional Analysis, 256 (2009), 2473. doi: 10.1016/j.jfa.2008.11.009.

[41]

B. Pausader, Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations,, J. Differential Equations, 241 (2007), 237. doi: 10.1016/j.jde.2007.06.001.

[42]

B. Pausader and W. Strauss, Analyticity of the scattering operator for the beam equation,, Discrete Contin. Dyn. Syst., 25 (2009), 617. doi: 10.3934/dcds.2009.25.617.

[43]

L. Peletier and W. C. Troy, Higher order models in Physics and Mechanics,, Prog in Non Diff Eq and App, 45 (2001).

[44]

B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $R^2$,, J. Funct. Analysis, 219 (2004), 340. doi: 10.1016/j.jfa.2004.06.013.

[45]

B. Ruf and S. Sani, Sharp Adams-type inequalities in $R^n$,, Trans. Amer. Math. Soc., 365 (2013), 645. doi: 10.1090/S0002-9947-2012-05561-9.

[46]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $R^{1+4}$,, Amer. J. Math., 129 (2007), 1.

[47]

T. Saanouni, Global well-posedness and scattering of a 2D Schrödinger equation with exponential growth,, Bull. Belg. Math. Soc., 17 (2010), 441.

[48]

T. Saanouni, Decay of Solutions to a $2D$ Schrödinger Equation,, J. Part. Diff. Eq., 24 (2011), 37. doi: 10.4208/jpde.v24.n1.3.

[49]

T. Saanouni, Scattering of a $2D$ Schrödinger equation with exponential growth in the conformal space,, Math. Meth. Appl. Sci, 33 (2010), 1046. doi: 10.1002/mma.1237.

[50]

T. Saanouni, Remarks on the semilinear Schrödinger equation,, J. Math. Anal. Appl., 400 (2013), 331. doi: 10.1016/j.jmaa.2012.11.037.

[51]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.

[52]

Shangbin Cui and Cuihua Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s(\mathbbR^n)$ and applications,, Nonlinear Analysis, 67 (2007), 687. doi: 10.1016/j.na.2006.06.020.

[53]

J. Shatah et M. Struwe, Well-posedness in the energy space for semilinear wave equation with critical growth,, IMRN, 7 (1994), 303. doi: 10.1155/S1073792894000346.

[54]

W. A. Strauss, On weak solutions of semi-linear hyperbolic equations,, Anais Acad. Brasil. Cienc., 42 (1970), 645.

[55]

M. Struwe, Semilinear wave equations,, Bull. Amer. Math. Soc, 26 (1992), 53.

[56]

M. Struwe, The critical nonlinear wave equation in 2 space dimensions,, J. European Math. Soc. (to appear)., ().

[57]

M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions,, Math. Ann, 350 (2011), 707. doi: 10.1007/s00208-010-0567-6.

[58]

T. Tao, Global well-posedness and scattering for the higher-dimensional energycritical non-linear Schrödinger equation for radial data,, New York J. of Math., 11 (2005), 57.

[59]

N. S. Trudinger, On imbedding into Orlicz spaces and some applications,, J. Math. Mech., 17 (1967), 473.

[60]

M. Visan, The defocusing energy-critical nolinear Schrödinger equation in higher dimensions,, Duke. Math. J., 138 (2007), 281. doi: 10.1215/S0012-7094-07-13825-0.

[1]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[2]

Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549

[3]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[4]

Marc Wolff, Stéphane Jaouen, Hervé Jourdren, Eric Sonnendrücker. High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 345-367. doi: 10.3934/dcdss.2012.5.345

[5]

Raymond H. Chan, Haixia Liang, Suhua Wei, Mila Nikolova, Xue-Cheng Tai. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 2015, 9 (1) : 55-77. doi: 10.3934/ipi.2015.9.55

[6]

Phillip Colella. High-order finite-volume methods on locally-structured grids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4247-4270. doi: 10.3934/dcds.2016.36.4247

[7]

Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541

[8]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[9]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[10]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[11]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[12]

Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic & Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193

[13]

Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129

[14]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[15]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[16]

Liming Ling. The algebraic representation for high order solution of Sasa-Satsuma equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1975-2010. doi: 10.3934/dcdss.2016081

[17]

Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic & Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024

[18]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[19]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[20]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]