January  2014, 13(1): 307-330. doi: 10.3934/cpaa.2014.13.307

The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space

1. 

Mathematics department, Shanghai Jiao Tong University, Shanghai 200240, China

2. 

Department of Mathematics, Shanghai Jiao Tong University, 800 Dong Chuan Road, 200240, Shanghai

Received  January 2013 Revised  May 2013 Published  July 2013

In this paper, we study the time-asymptotic behavior of the solution for the Cauchy problem of the damped wave equation with a nonlinear convection term in the multi-dimensional space. When the initial data is a small perturbation around a constant state $u^*$, we obtain the point-wise decay estimates of the solution under the so-called dissipative condition $|b| < 1$, where $b$ depends on $u^*$ and the nonlinear term.
Citation: Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307
References:
[1]

L. L. Fan, H. X. Liu and H. Yin, Dacay estimates of planar stationary waves for damped wave equations with nonlinear convection in mutil-dimensional half space,, Acta Math Sci, 31(B) (2011), 1389. doi: 10.1016/S0252-9602(11)60326-3. Google Scholar

[2]

T. Hosono and T. Ogawa, Large time behavior and $L^p-L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations,, J. Differ. Equations, 203 (2004), 82. doi: 10.1016/j.jde.2004.03.034. Google Scholar

[3]

L. C. Evans, "Partial Differential Equations,", Graduate in Math., (1998). Google Scholar

[4]

T. Li and Y. M. Chen, "Global Classical Solutions for Nonlinear Evolution Equations,", Pitman Monogr. Surv. Pure Appl. Math., (1992). Google Scholar

[5]

T. P. Liu, Pointwise convergence to shock waves for viscous conservation laws,, Comm. Pure Appl. Math, 50 (1997), 1113. doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.3.CO;2-8. Google Scholar

[6]

T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions,, Comm. Math. Phys., 169 (1998), 145. doi: 10.1007/s002200050418. Google Scholar

[7]

T. P. Liu and Y. Zeng, Large time behavior of solutions general quasilinear hyperbolic-parabolic systems of conservation laws,, A. M. S. memoirs, 599 (1997). Google Scholar

[8]

Y. Q. Liu, The point-wise estimates of solutions for semi-linear dissipative wave equation,, Comm. Pure Appl. Anal., 12 (2013), 237. doi: 10.3934/cpaa.2013.12.237. Google Scholar

[9]

Y. Q. Liu and W. K. Wang, The pointwise estimates of solutions for dissipative wave equation in multi-dimensions,, Discrete Contin. Dyn. Syst., 20 (2008), 1013. doi: 10.3934/dcds.2008.20.1013. Google Scholar

[10]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semiliear dissipative wave equation,, Math. Z., 214 (1993), 325. doi: 10.1007/BF02572407. Google Scholar

[11]

K. Nishihara, Global asymptotics for the damped wace equation with absotption in higher dimensional space,, J. Math. Soc., 58 (2006), 805. Google Scholar

[12]

K. Nishihara and H. J. Zhao, Dacay properties of solutions to the Cauchy problem for the damped wace equation with absorption,, J. Math. Anal. Appl., 313 (2006), 698. doi: 10.1016/j.jmaa.2005.08.059. Google Scholar

[13]

K. Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations,, Discrete Contin. Dyn. Syst., 9 (2003), 651. doi: 10.3934/dcds.2003.9.651. Google Scholar

[14]

R. Ikehata, A remark on a critical exponent for the semilinear dissipative wave equation in the one dimensional half space,, Differential Integral Equations, 16 (2003), 727. Google Scholar

[15]

R. Ikehata, K. Nishihara and H. J. Zhao, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption,, J. Differ. Equation, 226 (2006), 1. doi: 10.1016/j.jde.2006.01.002. Google Scholar

[16]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,, J. Math. Soc. Japan, 47 (1995), 617. doi: 10.2969/jmsj/04740617. Google Scholar

[17]

Y. Ueda, Asymptotic stability of stationary waves for damped wave equations with a nonlinear convection term,, Adv. Math. Sci. Appl., 18 (2008), 329. Google Scholar

[18]

Y. Ueda, T. Nakamura and S. Kawashima, Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space,, Kinet. Relat. Models, 1 (2008), 49. doi: 10.3934/krm.2008.1.49. Google Scholar

[19]

W. K. Wang and W. J. Wang, The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions,, J. Math. Anal. Appl., 366 (2010), 226. doi: 10.1016/j.jmaa.2009.12.013. Google Scholar

[20]

W. K. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions,, J. Differ. Equations, 173 (2001), 410. doi: 10.1006/jdeq.2000.3937. Google Scholar

show all references

References:
[1]

L. L. Fan, H. X. Liu and H. Yin, Dacay estimates of planar stationary waves for damped wave equations with nonlinear convection in mutil-dimensional half space,, Acta Math Sci, 31(B) (2011), 1389. doi: 10.1016/S0252-9602(11)60326-3. Google Scholar

[2]

T. Hosono and T. Ogawa, Large time behavior and $L^p-L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations,, J. Differ. Equations, 203 (2004), 82. doi: 10.1016/j.jde.2004.03.034. Google Scholar

[3]

L. C. Evans, "Partial Differential Equations,", Graduate in Math., (1998). Google Scholar

[4]

T. Li and Y. M. Chen, "Global Classical Solutions for Nonlinear Evolution Equations,", Pitman Monogr. Surv. Pure Appl. Math., (1992). Google Scholar

[5]

T. P. Liu, Pointwise convergence to shock waves for viscous conservation laws,, Comm. Pure Appl. Math, 50 (1997), 1113. doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.3.CO;2-8. Google Scholar

[6]

T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions,, Comm. Math. Phys., 169 (1998), 145. doi: 10.1007/s002200050418. Google Scholar

[7]

T. P. Liu and Y. Zeng, Large time behavior of solutions general quasilinear hyperbolic-parabolic systems of conservation laws,, A. M. S. memoirs, 599 (1997). Google Scholar

[8]

Y. Q. Liu, The point-wise estimates of solutions for semi-linear dissipative wave equation,, Comm. Pure Appl. Anal., 12 (2013), 237. doi: 10.3934/cpaa.2013.12.237. Google Scholar

[9]

Y. Q. Liu and W. K. Wang, The pointwise estimates of solutions for dissipative wave equation in multi-dimensions,, Discrete Contin. Dyn. Syst., 20 (2008), 1013. doi: 10.3934/dcds.2008.20.1013. Google Scholar

[10]

M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semiliear dissipative wave equation,, Math. Z., 214 (1993), 325. doi: 10.1007/BF02572407. Google Scholar

[11]

K. Nishihara, Global asymptotics for the damped wace equation with absotption in higher dimensional space,, J. Math. Soc., 58 (2006), 805. Google Scholar

[12]

K. Nishihara and H. J. Zhao, Dacay properties of solutions to the Cauchy problem for the damped wace equation with absorption,, J. Math. Anal. Appl., 313 (2006), 698. doi: 10.1016/j.jmaa.2005.08.059. Google Scholar

[13]

K. Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations,, Discrete Contin. Dyn. Syst., 9 (2003), 651. doi: 10.3934/dcds.2003.9.651. Google Scholar

[14]

R. Ikehata, A remark on a critical exponent for the semilinear dissipative wave equation in the one dimensional half space,, Differential Integral Equations, 16 (2003), 727. Google Scholar

[15]

R. Ikehata, K. Nishihara and H. J. Zhao, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption,, J. Differ. Equation, 226 (2006), 1. doi: 10.1016/j.jde.2006.01.002. Google Scholar

[16]

S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term,, J. Math. Soc. Japan, 47 (1995), 617. doi: 10.2969/jmsj/04740617. Google Scholar

[17]

Y. Ueda, Asymptotic stability of stationary waves for damped wave equations with a nonlinear convection term,, Adv. Math. Sci. Appl., 18 (2008), 329. Google Scholar

[18]

Y. Ueda, T. Nakamura and S. Kawashima, Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space,, Kinet. Relat. Models, 1 (2008), 49. doi: 10.3934/krm.2008.1.49. Google Scholar

[19]

W. K. Wang and W. J. Wang, The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions,, J. Math. Anal. Appl., 366 (2010), 226. doi: 10.1016/j.jmaa.2009.12.013. Google Scholar

[20]

W. K. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions,, J. Differ. Equations, 173 (2001), 410. doi: 10.1006/jdeq.2000.3937. Google Scholar

[1]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[2]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[3]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[4]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[5]

Petteri Harjulehto, Peter Hästö, Juha Tiirola. Point-wise behavior of the Geman--McClure and the Hebert--Leahy image restoration models. Inverse Problems & Imaging, 2015, 9 (3) : 835-851. doi: 10.3934/ipi.2015.9.835

[6]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[7]

Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783

[8]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[9]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[10]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[11]

Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227

[12]

C. E. Kenig, S. N. Ziesler. Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation. Communications on Pure & Applied Analysis, 2005, 4 (1) : 45-91. doi: 10.3934/cpaa.2005.4.45

[13]

Yoshihiro Ueda, Tohru Nakamura, Shuichi Kawashima. Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space. Kinetic & Related Models, 2008, 1 (1) : 49-64. doi: 10.3934/krm.2008.1.49

[14]

Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 901-911. doi: 10.3934/dcdss.2015.8.901

[15]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

[16]

Yongqin Liu, Weike Wang. The pointwise estimates of solutions for dissipative wave equation in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1013-1028. doi: 10.3934/dcds.2008.20.1013

[17]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[18]

Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations & Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645

[19]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[20]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]