March  2014, 13(2): 645-655. doi: 10.3934/cpaa.2014.13.645

Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials

1. 

School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China, China

Received  January 2013 Revised  July 2013 Published  October 2013

In this paper, we consider the boundedness of solutions for a class of impact oscillators with time dependent polynomial potentials, \begin{eqnarray} \ddot{x}+x^{2n+1}+\sum_{i=0}^{2n}p_{i}(t)x^{i}=0, \quad for\ x(t)> 0,\\ x(t)\geq 0,\\ \dot{x}(t_{0}^{+})=-\dot{x}(t_{0}^{-}), \quad if\ x(t_{0})=0, \end{eqnarray} where $n\in N^+$, $p_i(t+1)=p_i(t)$ and $p_i(t)\in C^5(R/Z).$
Citation: Daxiong Piao, Xiang Sun. Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials. Communications on Pure & Applied Analysis, 2014, 13 (2) : 645-655. doi: 10.3934/cpaa.2014.13.645
References:
[1]

R. Dieckerhoff and E. Zehnder, Boundedness of solutions via the Twist Theorem,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 79.

[2]

S. Laederich and M. Levi, Invariant curves and time-dependent potentials,, Ergo.Th. and Dynam. Syst., 11 (1991), 365. doi: 10.1017/S0143385700006192.

[3]

X. Yuan, Invariant tori of Duffing-type equations,, Adv. in Math. (China), 24 (1995), 375.

[4]

X. Yuan, Invariant tori of Duffing-type equations,, J. Differential Equations, 142 (1998), 231.

[5]

M. Kunze, "Non-Smooth Dynamical Systems,", in: Lecture Notes in Math., (2000).

[6]

H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator,, Physica D, 82 (1995), 117. doi: 10.1016/0167-2789(94)00222-C.

[7]

P. Boyland, Dual billiards, twist maps and impact oscillators,, Nonlinearity, 9 (1996), 1411. doi: 10.1088/0951-7715/9/6/002.

[8]

M. Corbera and J. Llibre, Periodic orbits of a collinear restricted three body problem,, Celestial Mech. Dynam. Astronom., 86 (2003), 163. doi: 10.1023/A:1024183003251.

[9]

D. Qian and P. J. Torres, Periodic motions of linear impact oscilltors via successor map,, SIAM J. Math. Anal., 36 (2005), 1707. doi: 10.1137/S003614100343771X.

[10]

D. Qian and X. Sun, Inariant tori for asymptotically linear impact oscillators,, Sci. China: Ser. A Math., 49 (2006), 669. doi: 10.1007/s11425-006-0669-5.

[11]

V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts,, Comm. Math. Phys., 211 (2000), 289. doi: 10.1007/s002200050813.

[12]

Z. Wang and Y. Wang, Existence of quasiperiodic solutions and Littlewood's boundedness problem of super-linear impact oscillators,, Applied Mathematics and Computation, 217 (2011), 6417. doi: 10.1016/j.amc.2011.01.037.

[13]

Z. Wang, Q. Liu and D. Qian, Existence of quasiperiodic solutions and Littlewood's boundedness problem of sub-linear impact oscillators,, Nonlinear Analysis, 74 (2011), 5606. doi: 10.1016/j.na.2011.05.046.

[14]

D. Qian, Large amplitude periodic bouncing in impact oscillators with damping,, Proc. Amer. Math. Soc., 133 (2005), 1797. doi: 10.1090/S0002-9939-04-07759-7.

[15]

D. Qian and P. J. Torres, Bouncing solutions of an equation with attractive singularity,, Proc. Roy. Soc. Edinburgh, 134 (2004), 201. doi: 10.1017/S0308210500003164.

[16]

Z. Wang, C. Ruan and D. Qian, Existence and multiplicity of subharmonic bouncing solutions for sub-linear impact oscillators,, J. Nanjing Univ. Math. Biquart., 27 (2010), 17. doi: 10.3969/j.issn.0469-5097.2010.01.003.

[17]

R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist theorem,, Proc. London. Math. Soc., 79 (1999), 381. doi: 10.1112/S0024611599012034.

[18]

M. Levi, Quasiperiodic motions in superquadratic time-periodic potentials,, Commun. Math. Phys., 143 (1991), 43. doi: 10.1007/BF02100285.

[19]

B. Liu, Boundedness in nonlinear oscillations at resonance,, J. Differential Equations, 153 (1999), 142. doi: 10.1006/jdeq.1998.3553.

[20]

L. Jiao, D. Piao and Y. Wang, Boundedness for the general semilinear Duffing equation via the twist theorem,, J. Differential Equations, 252 (2012), 91. doi: 10.1016/j.jde.2011.09.019.

[21]

J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. wiss, Kl. (1962), 1.

[22]

H. Rüssman, On the existence of invariant curves of twist mappings of an annulus,, Lecture Notes Math., 1007 (1983), 677. doi: 10.1007/BFb0061441.

show all references

References:
[1]

R. Dieckerhoff and E. Zehnder, Boundedness of solutions via the Twist Theorem,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 79.

[2]

S. Laederich and M. Levi, Invariant curves and time-dependent potentials,, Ergo.Th. and Dynam. Syst., 11 (1991), 365. doi: 10.1017/S0143385700006192.

[3]

X. Yuan, Invariant tori of Duffing-type equations,, Adv. in Math. (China), 24 (1995), 375.

[4]

X. Yuan, Invariant tori of Duffing-type equations,, J. Differential Equations, 142 (1998), 231.

[5]

M. Kunze, "Non-Smooth Dynamical Systems,", in: Lecture Notes in Math., (2000).

[6]

H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator,, Physica D, 82 (1995), 117. doi: 10.1016/0167-2789(94)00222-C.

[7]

P. Boyland, Dual billiards, twist maps and impact oscillators,, Nonlinearity, 9 (1996), 1411. doi: 10.1088/0951-7715/9/6/002.

[8]

M. Corbera and J. Llibre, Periodic orbits of a collinear restricted three body problem,, Celestial Mech. Dynam. Astronom., 86 (2003), 163. doi: 10.1023/A:1024183003251.

[9]

D. Qian and P. J. Torres, Periodic motions of linear impact oscilltors via successor map,, SIAM J. Math. Anal., 36 (2005), 1707. doi: 10.1137/S003614100343771X.

[10]

D. Qian and X. Sun, Inariant tori for asymptotically linear impact oscillators,, Sci. China: Ser. A Math., 49 (2006), 669. doi: 10.1007/s11425-006-0669-5.

[11]

V. Zharnitsky, Invariant tori in Hamiltonian systems with impacts,, Comm. Math. Phys., 211 (2000), 289. doi: 10.1007/s002200050813.

[12]

Z. Wang and Y. Wang, Existence of quasiperiodic solutions and Littlewood's boundedness problem of super-linear impact oscillators,, Applied Mathematics and Computation, 217 (2011), 6417. doi: 10.1016/j.amc.2011.01.037.

[13]

Z. Wang, Q. Liu and D. Qian, Existence of quasiperiodic solutions and Littlewood's boundedness problem of sub-linear impact oscillators,, Nonlinear Analysis, 74 (2011), 5606. doi: 10.1016/j.na.2011.05.046.

[14]

D. Qian, Large amplitude periodic bouncing in impact oscillators with damping,, Proc. Amer. Math. Soc., 133 (2005), 1797. doi: 10.1090/S0002-9939-04-07759-7.

[15]

D. Qian and P. J. Torres, Bouncing solutions of an equation with attractive singularity,, Proc. Roy. Soc. Edinburgh, 134 (2004), 201. doi: 10.1017/S0308210500003164.

[16]

Z. Wang, C. Ruan and D. Qian, Existence and multiplicity of subharmonic bouncing solutions for sub-linear impact oscillators,, J. Nanjing Univ. Math. Biquart., 27 (2010), 17. doi: 10.3969/j.issn.0469-5097.2010.01.003.

[17]

R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist theorem,, Proc. London. Math. Soc., 79 (1999), 381. doi: 10.1112/S0024611599012034.

[18]

M. Levi, Quasiperiodic motions in superquadratic time-periodic potentials,, Commun. Math. Phys., 143 (1991), 43. doi: 10.1007/BF02100285.

[19]

B. Liu, Boundedness in nonlinear oscillations at resonance,, J. Differential Equations, 153 (1999), 142. doi: 10.1006/jdeq.1998.3553.

[20]

L. Jiao, D. Piao and Y. Wang, Boundedness for the general semilinear Duffing equation via the twist theorem,, J. Differential Equations, 252 (2012), 91. doi: 10.1016/j.jde.2011.09.019.

[21]

J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. wiss, Kl. (1962), 1.

[22]

H. Rüssman, On the existence of invariant curves of twist mappings of an annulus,, Lecture Notes Math., 1007 (1983), 677. doi: 10.1007/BFb0061441.

[1]

Yanmin Niu, Xiong Li. An application of Moser's twist theorem to superlinear impulsive differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 431-445. doi: 10.3934/dcds.2019017

[2]

Huiping Jin. Boundedness in a class of duffing equations with oscillating potentials via the twist theorem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 179-192. doi: 10.3934/cpaa.2011.10.179

[3]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[4]

Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911

[5]

Božzidar Jovanović. Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. Journal of Geometric Mechanics, 2018, 10 (2) : 173-187. doi: 10.3934/jgm.2018006

[6]

Alessandro Fortunati, Stephen Wiggins. Normal forms à la Moser for aperiodically time-dependent Hamiltonians in the vicinity of a hyperbolic equilibrium. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1109-1118. doi: 10.3934/dcdss.2016044

[7]

Florian Wagener. A parametrised version of Moser's modifying terms theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 719-768. doi: 10.3934/dcdss.2010.3.719

[8]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[9]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

[10]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[11]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[12]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks & Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[13]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[14]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[15]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[16]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[17]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[18]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[19]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[20]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]