• Previous Article
    Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems
  • CPAA Home
  • This Issue
  • Next Article
    The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction
2014, 13(1): 97-118. doi: 10.3934/cpaa.2014.13.97

Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities

1. 

Department of Mathematical and Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan

2. 

Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551

3. 

Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto-City, 603-8555, Japan

Received  April 2012 Revised  May 2013 Published  July 2013

We study the asymptotic behavior of the ground state for a class of quasilinear Schrödinger equations with general nonlinearities. By the variational argument and dual approach, we show the asymptotic non-degeneracy and uniqueness of the ground state.
Citation: Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97
References:
[1]

S. Adachi and T. Watanabe, $G$-invariant positive solutions for a quasilinear Schrödinger equation,, Adv. Diff. Eqns., 16 (2011), 289.

[2]

S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations,, Nonlinear Anal., 75 (2012), 819. doi: 10.1016/j.na.2011.09.015.

[3]

S. Adachi and T. Watanabe, Asymptotic properties of ground states of quasilinear Schrödinger equations with $H^1$-subcritical exponent,, Adv. Nonlinear Stud., 12 (2012), 255.

[4]

A. Ambrosetti and Z. Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\R$,, Disc. Cont. Dyn. Syst., 9 (2003), 55. doi: 10.3934/dcds.2003.9.55.

[5]

P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems,, J. Funct. Anal., 196 (2002), 211. doi: 10.1016/S0022-1236(02)00013-7.

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar fields equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313. doi: 10.1007/BF00250555.

[7]

J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. PDE, 36 (2009), 481. doi: 10.1007/s00526-009-0238-1.

[8]

L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice,, Physica D, 159 (2001), 71.

[9]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, Nonlinear Anal. TMA., 56 (2004), 213. doi: 10.1016/j.na.2003.09.008.

[10]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353. doi: 10.1088/0951-7715/23/6/006.

[11]

J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\RN$: mountain pass and symmetric mountain pass approaches,, Top. Methods in Nonlinear Anal., 35 (2010), 253.

[12]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\RN$,, Proc. Amer. Math. Soc., 131 (2003), 2399. doi: 10.1090/S0002-9939-02-06821-1.

[13]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262.

[14]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243. doi: 10.1007/BF00251502.

[15]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Diff. Eqns., (2003), 473. doi: 10.1016/S0022-0396(02)00064-5.

[16]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. PDE, 29 (2004), 879. doi: 10.1081/PDE-120037335.

[17]

W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problems,, Duke Math. J., 70 (1992), 247. doi: 10.1215/S0012-7094-93-07004-4.

[18]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, II,, J. Diff. Eqns., 158 (1999), 94. doi: 10.1016/S0022-0396(99)80020-5.

[19]

M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. PDE, 14 (2002), 329. doi: 10.1007/s005260100105.

[20]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897. doi: 10.1512/iumj.2000.49.1893.

show all references

References:
[1]

S. Adachi and T. Watanabe, $G$-invariant positive solutions for a quasilinear Schrödinger equation,, Adv. Diff. Eqns., 16 (2011), 289.

[2]

S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations,, Nonlinear Anal., 75 (2012), 819. doi: 10.1016/j.na.2011.09.015.

[3]

S. Adachi and T. Watanabe, Asymptotic properties of ground states of quasilinear Schrödinger equations with $H^1$-subcritical exponent,, Adv. Nonlinear Stud., 12 (2012), 255.

[4]

A. Ambrosetti and Z. Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\R$,, Disc. Cont. Dyn. Syst., 9 (2003), 55. doi: 10.3934/dcds.2003.9.55.

[5]

P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems,, J. Funct. Anal., 196 (2002), 211. doi: 10.1016/S0022-1236(02)00013-7.

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar fields equations, I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313. doi: 10.1007/BF00250555.

[7]

J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. PDE, 36 (2009), 481. doi: 10.1007/s00526-009-0238-1.

[8]

L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice,, Physica D, 159 (2001), 71.

[9]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach,, Nonlinear Anal. TMA., 56 (2004), 213. doi: 10.1016/j.na.2003.09.008.

[10]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353. doi: 10.1088/0951-7715/23/6/006.

[11]

J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\RN$: mountain pass and symmetric mountain pass approaches,, Top. Methods in Nonlinear Anal., 35 (2010), 253.

[12]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\RN$,, Proc. Amer. Math. Soc., 131 (2003), 2399. doi: 10.1090/S0002-9939-02-06821-1.

[13]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, J. Phys. Soc. Japan, 50 (1981), 3262.

[14]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$,, Arch. Rat. Mech. Anal., 105 (1989), 243. doi: 10.1007/BF00251502.

[15]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations II,, J. Diff. Eqns., (2003), 473. doi: 10.1016/S0022-0396(02)00064-5.

[16]

J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. PDE, 29 (2004), 879. doi: 10.1081/PDE-120037335.

[17]

W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problems,, Duke Math. J., 70 (1992), 247. doi: 10.1215/S0012-7094-93-07004-4.

[18]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, II,, J. Diff. Eqns., 158 (1999), 94. doi: 10.1016/S0022-0396(99)80020-5.

[19]

M. Poppenberg, K. Schmitt and Z.-Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, Calc. Var. PDE, 14 (2002), 329. doi: 10.1007/s005260100105.

[20]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897. doi: 10.1512/iumj.2000.49.1893.

[1]

Yinbin Deng, Qi Gao. Asymptotic behavior of the positive solutions for an elliptic equation with Hardy term. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 367-380. doi: 10.3934/dcds.2009.24.367

[2]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

[3]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[4]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[5]

Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391

[6]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[7]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[8]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[9]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[10]

Long Wei. Concentrating phenomena in some elliptic Neumann problem: Asymptotic behavior of solutions. Communications on Pure & Applied Analysis, 2008, 7 (4) : 925-946. doi: 10.3934/cpaa.2008.7.925

[11]

Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053

[12]

Haitao Yang. On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in $R^n$. Communications on Pure & Applied Analysis, 2005, 4 (1) : 187-198. doi: 10.3934/cpaa.2005.4.197

[13]

Fang-Fang Liao, Chun-Lei Tang. Four positive solutions of a quasilinear elliptic equation in $ R^N$. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2577-2600. doi: 10.3934/cpaa.2013.12.2577

[14]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[15]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[16]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[17]

Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735

[18]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[19]

Yan Zhang. Asymptotic behavior of a nonlocal KPP equation with an almost periodic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5183-5199. doi: 10.3934/dcds.2016025

[20]

Weijiu Liu. Asymptotic behavior of solutions of time-delayed Burgers' equation. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 47-56. doi: 10.3934/dcdsb.2002.2.47

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (4)

[Back to Top]