2015, 14(3): 1097-1125. doi: 10.3934/cpaa.2015.14.1097

Klein-Gordon-Maxwell equations in high dimensions

1. 

Université de Cergy-Pontoise, CNRS, Département de Mathématiques, F-95000 Cergy-Pontoise, France

Published  March 2015

We prove the existence of a mountain-pass solution and the a priori bound property for the electrostatic Klein-Gordon-Maxwell equations in high dimensions.
Citation: Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097
References:
[1]

Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Functional Analysis}, 14 (1973), 349.

[2]

Thierry Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire,, \emph{J. Math. Pures Appl.}, 55 (1976), 269.

[3]

A. Azzollini, L. Pisani and A. Pomponio, Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 141 (2011), 449. doi: 10.1017/S0308210509001814.

[4]

Antonio Azzollini and Alessio Pomponio, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations,, \emph{Topol. Methods Nonlinear Anal.}, 35 (2010), 33.

[5]

Vieri Benci and Claudio Bonanno, Solitary waves and vortices in non-Abelian gauge theories with matter,, \emph{Adv. Nonlinear Stud.}, 12 (2012), 717.

[6]

Vieri Benci and Donato Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations,, \emph{Rev. Math. Phys.}, 14 (2002), 409. doi: 10.1142/S0129055X02001168.

[7]

Vieri Benci and Donato Fortunato, Solitary waves in the nonlinear wave equation and in gauge theories,, \emph{J. Fixed Point Theory Appl.}, 1 (2007), 61. doi: 10.1007/s11784-006-0008-z.

[8]

Vieri Benci and Donato Fortunato, Existence of hylomorphic solitary waves in Klein-Gordon and in Klein-Gordon-Maxwell equations,, \emph{Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl.}, 20 (2009), 243. doi: 10.4171/RLM/546.

[9]

Vieri Benci and Donato Fortunato, Spinning $Q$-balls for the Klein-Gordon-Maxwell equations,, \emph{Comm. Math. Phys.}, 295 (2010), 639. doi: 10.1007/s00220-010-0985-z.

[10]

Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437. doi: 10.1002/cpa.3160360405.

[11]

Luis A. Caffarelli, Basilis Gidas and Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, \emph{Comm. Pure Appl. Math.}, 42 (1989), 271. doi: 10.1002/cpa.3160420304.

[12]

Daniele Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations,, \emph{Nonlinear Anal.}, 58 (2004), 733. doi: 10.1016/j.na.2003.05.001.

[13]

Monica Clapp, Marco Ghimenti and Anna Maria Micheletti, Semiclassical states for a static supercritical Klein-Gordon-Maxwell-Proca system on a closed Riemannian manifold,, Preprint, (2013).

[14]

Olivier Druet, Compactness for Yamabe metrics in low dimensions,, \emph{Int. Math. Res. Not.}, 23 (2004), 1143. doi: 10.1155/S1073792804133278.

[15]

Olivier Druet and Emmanuel Hebey, Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium,, \emph{Anal. PDE}, 2 (2009), 305. doi: 10.2140/apde.2009.2.305.

[16]

Olivier Druet and Emmanuel Hebey, Existence and a priori bounds for electrostatic Klein-Gordon-Maxwell systems in fully inhomogeneous spaces,, \emph{Commun. Contemp. Math.}, 12 (2010), 831. doi: 10.1142/S0219199710004007.

[17]

Olivier Druet, Emmanuel Hebey and Paul Laurain, Stability of elliptic PDEs with respect to perturbations of the domain,, \emph{J. Differential Equations}, 255 (2013), 3703. doi: 10.1016/j.jde.2013.07.051.

[18]

Olivier Druet, Emmanuel Hebey and Frédéric Robert, Blow-up Theory for Elliptic PDEs in Riemannian Geometry,, Mathematical Notes, 45 (2004). doi: 10.1007/BF01158557.

[19]

Olivier Druet, Emmanuel Hebey and Jérôme Vétois, Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian,, \emph{J. Funct. Anal.}, 258 (2010), 999. doi: 10.1016/j.jfa.2009.07.004.

[20]

Olivier Druet, Emmanuel Hebey and Jérôme Vétois, Stable phases for the 4-dimensional KGMP system.,, \emph{J. Reine Angew. Math.}, ().

[21]

Olivier Druet and Paul Laurain, Stability of the Pohožaev obstruction in dimension 3,, \emph{J. Eur. Math. Soc. (JEMS)}, 12 (2010), 1117. doi: 10.4171/JEMS/225.

[22]

Teresa D'Aprile and Dimitri Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations,, \emph{Adv. Nonlinear Stud.}, 4 (2004), 307.

[23]

Teresa D'Aprile and Dimitri Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 134 (2004), 893. doi: 10.1017/S030821050000353X.

[24]

Teresa D'Aprile and Juncheng Wei, Layered solutions for a semilinear elliptic system in a ball,, \emph{J. Differential Equations}, 226 (2006), 269. doi: 10.1016/j.jde.2005.12.009.

[25]

Teresa D'Aprile and Juncheng Wei, Solutions en grappe autour des centres harmoniques d'un système elliptique couplé,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 24 (2007), 605. doi: 10.1016/j.anihpc.2006.04.003.

[26]

Pietro d'Avenia and Lorenzo Pisani, Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations,, \emph{Electron. J. Differential Equations}, (2002).

[27]

P. d'Avenia, L. Pisani and G. Siciliano, Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems,, \emph{Nonlinear Anal.}, 71 (2009). doi: 10.1016/j.na.2009.02.111.

[28]

Pietro d'Avenia, Lorenzo Pisani and Gaetano Siciliano, Klein-Gordon-Maxwell systems in a bounded domain,, \emph{Discrete Contin. Dyn. Syst.}, 26 (2010), 135. doi: 10.3934/dcds.2010.26.135.

[29]

Pierpaolo Esposito, Angela Pistoia and Jérôme Vétois, The effect of linear perturbations on the Yamabe problem,, \emph{Math. Ann.}, (). doi: 10.1007/s00208-013-0971-9.

[30]

Vladimir Georgiev and Nicola Visciglia, Solitary waves for Klein-Gordon-Maxwell system with external Coulomb potential,, \emph{J. Math. Pures Appl.}, 84 (2005), 957. doi: 10.1016/j.matpur.2004.09.016.

[31]

Marco Ghimenti and Anna Maria Micheletti, Number and profile of low energy solutions for singularly perturbed Klein-Gordon-Maxwell systems on a Riemannian manifold,, Preprint, (2013). doi: 10.1016/j.jde.2014.01.012.

[32]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, \emph{Comm. Partial Differential Equations}, 6 (1981), 883. doi: 10.1080/03605308108820196.

[33]

David Gilbarg and Neil S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics, (2001).

[34]

Emmanuel Hebey, Solitary waves in critical abelian gauge theories,, \emph{Discrete Contin. Dyn. Syst.}, 32 (2012), 1747. doi: 10.3934/dcds.2012.32.1747.

[35]

Emmanuel Hebey, Compactness and Stability for Nonlinear Elliptic Equations,, European Mathematical Society, (). doi: 10.4171/134.

[36]

Emmanuel Hebey and Juncheng Wei, Resonant states for the static Klein-Gordon-Maxwell-Proca system,, \emph{Math. Res. Lett.}, 19 (2012), 953. doi: 10.4310/MRL.2012.v19.n4.a18.

[37]

Emmanuel Hebey and Juncheng Wei, Schrödinger-Poisson systems in the 3-sphere,, \emph{Calc. Var. Partial Differential Equations}, 47 (2013), 25. doi: 10.1007/s00526-012-0509-0.

[38]

Emmanuel Hebey and Trong Tuong Truong, Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional closed manifolds,, \emph{J. Reine Angew. Math., 667 (2012), 221.

[39]

Emmanuel Hebey and Michel Vaugon, The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds,, \emph{Duke Math. J.}, 79 (1995), 235. doi: 10.1215/S0012-7094-95-07906-X.

[40]

YanYan Li and Lei Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations,, \emph{J. Anal. Math.}, 90 (2003), 27. doi: 10.1007/BF02786551.

[41]

YanYan Li and Lei Zhang, A Harnack type inequality for the Yamabe equation in low dimensions,, \emph{Calc. Var. Partial Differential Equations}, 20 (2004), 133. doi: 10.1007/s00526-003-0224-y.

[42]

YanYan Li and Lei Zhang, Compactness of solutions to the Yamabe problem. II,, \emph{Calc. Var. Partial Differential Equations}, 24 (2005), 185. doi: 10.1007/s00526-004-0320-7.

[43]

Yanyan Li and Meijun Zhu, Yamabe type equations on three-dimensional Riemannian manifolds,, \emph{Commun. Contemp. Math.}, 1 (1999), 1. doi: 10.1142/S021919979900002X.

[44]

Dimitri Mugnai, Coupled Klein-Gordon and Born-Infeld-type equations: looking for solitary waves,, \emph{Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.}, 460 (2004), 1519. doi: 10.1098/rspa.2003.1267.

[45]

Dimitri Mugnai, Solitary waves in abelian gauge theories with strongly nonlinear potentials,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 27 (2010), 1055. doi: 10.1016/j.anihpc.2010.02.001.

[46]

Frédérique Robert and Jérôme Vétois, Examples of non-isolated blow-up for perturbations of the scalar curvature equation,, Preprint, (2012).

[47]

Frédérique Robert and Jérôme Vétois, A General Theorem for the Construction of Blowing-up Solutions to Some Elliptic Nonlinear Equations with Lyapunov-Schmidt's Finite-dimensional Reduction, Cocompact Imbeddings, Profile Decompositions, and their Applications to PDE,, Trends Math., (2013), 85.

[48]

Michael Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities,, \emph{Math. Z.}, 187 (1984), 511. doi: 10.1007/BF01174186.

[49]

Neil S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds,, \emph{Ann. Scuola Norm. Sup. Pisa}, 22 (1968), 265.

show all references

References:
[1]

Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Functional Analysis}, 14 (1973), 349.

[2]

Thierry Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire,, \emph{J. Math. Pures Appl.}, 55 (1976), 269.

[3]

A. Azzollini, L. Pisani and A. Pomponio, Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 141 (2011), 449. doi: 10.1017/S0308210509001814.

[4]

Antonio Azzollini and Alessio Pomponio, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations,, \emph{Topol. Methods Nonlinear Anal.}, 35 (2010), 33.

[5]

Vieri Benci and Claudio Bonanno, Solitary waves and vortices in non-Abelian gauge theories with matter,, \emph{Adv. Nonlinear Stud.}, 12 (2012), 717.

[6]

Vieri Benci and Donato Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations,, \emph{Rev. Math. Phys.}, 14 (2002), 409. doi: 10.1142/S0129055X02001168.

[7]

Vieri Benci and Donato Fortunato, Solitary waves in the nonlinear wave equation and in gauge theories,, \emph{J. Fixed Point Theory Appl.}, 1 (2007), 61. doi: 10.1007/s11784-006-0008-z.

[8]

Vieri Benci and Donato Fortunato, Existence of hylomorphic solitary waves in Klein-Gordon and in Klein-Gordon-Maxwell equations,, \emph{Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl.}, 20 (2009), 243. doi: 10.4171/RLM/546.

[9]

Vieri Benci and Donato Fortunato, Spinning $Q$-balls for the Klein-Gordon-Maxwell equations,, \emph{Comm. Math. Phys.}, 295 (2010), 639. doi: 10.1007/s00220-010-0985-z.

[10]

Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437. doi: 10.1002/cpa.3160360405.

[11]

Luis A. Caffarelli, Basilis Gidas and Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, \emph{Comm. Pure Appl. Math.}, 42 (1989), 271. doi: 10.1002/cpa.3160420304.

[12]

Daniele Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations,, \emph{Nonlinear Anal.}, 58 (2004), 733. doi: 10.1016/j.na.2003.05.001.

[13]

Monica Clapp, Marco Ghimenti and Anna Maria Micheletti, Semiclassical states for a static supercritical Klein-Gordon-Maxwell-Proca system on a closed Riemannian manifold,, Preprint, (2013).

[14]

Olivier Druet, Compactness for Yamabe metrics in low dimensions,, \emph{Int. Math. Res. Not.}, 23 (2004), 1143. doi: 10.1155/S1073792804133278.

[15]

Olivier Druet and Emmanuel Hebey, Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium,, \emph{Anal. PDE}, 2 (2009), 305. doi: 10.2140/apde.2009.2.305.

[16]

Olivier Druet and Emmanuel Hebey, Existence and a priori bounds for electrostatic Klein-Gordon-Maxwell systems in fully inhomogeneous spaces,, \emph{Commun. Contemp. Math.}, 12 (2010), 831. doi: 10.1142/S0219199710004007.

[17]

Olivier Druet, Emmanuel Hebey and Paul Laurain, Stability of elliptic PDEs with respect to perturbations of the domain,, \emph{J. Differential Equations}, 255 (2013), 3703. doi: 10.1016/j.jde.2013.07.051.

[18]

Olivier Druet, Emmanuel Hebey and Frédéric Robert, Blow-up Theory for Elliptic PDEs in Riemannian Geometry,, Mathematical Notes, 45 (2004). doi: 10.1007/BF01158557.

[19]

Olivier Druet, Emmanuel Hebey and Jérôme Vétois, Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian,, \emph{J. Funct. Anal.}, 258 (2010), 999. doi: 10.1016/j.jfa.2009.07.004.

[20]

Olivier Druet, Emmanuel Hebey and Jérôme Vétois, Stable phases for the 4-dimensional KGMP system.,, \emph{J. Reine Angew. Math.}, ().

[21]

Olivier Druet and Paul Laurain, Stability of the Pohožaev obstruction in dimension 3,, \emph{J. Eur. Math. Soc. (JEMS)}, 12 (2010), 1117. doi: 10.4171/JEMS/225.

[22]

Teresa D'Aprile and Dimitri Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations,, \emph{Adv. Nonlinear Stud.}, 4 (2004), 307.

[23]

Teresa D'Aprile and Dimitri Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 134 (2004), 893. doi: 10.1017/S030821050000353X.

[24]

Teresa D'Aprile and Juncheng Wei, Layered solutions for a semilinear elliptic system in a ball,, \emph{J. Differential Equations}, 226 (2006), 269. doi: 10.1016/j.jde.2005.12.009.

[25]

Teresa D'Aprile and Juncheng Wei, Solutions en grappe autour des centres harmoniques d'un système elliptique couplé,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 24 (2007), 605. doi: 10.1016/j.anihpc.2006.04.003.

[26]

Pietro d'Avenia and Lorenzo Pisani, Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations,, \emph{Electron. J. Differential Equations}, (2002).

[27]

P. d'Avenia, L. Pisani and G. Siciliano, Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems,, \emph{Nonlinear Anal.}, 71 (2009). doi: 10.1016/j.na.2009.02.111.

[28]

Pietro d'Avenia, Lorenzo Pisani and Gaetano Siciliano, Klein-Gordon-Maxwell systems in a bounded domain,, \emph{Discrete Contin. Dyn. Syst.}, 26 (2010), 135. doi: 10.3934/dcds.2010.26.135.

[29]

Pierpaolo Esposito, Angela Pistoia and Jérôme Vétois, The effect of linear perturbations on the Yamabe problem,, \emph{Math. Ann.}, (). doi: 10.1007/s00208-013-0971-9.

[30]

Vladimir Georgiev and Nicola Visciglia, Solitary waves for Klein-Gordon-Maxwell system with external Coulomb potential,, \emph{J. Math. Pures Appl.}, 84 (2005), 957. doi: 10.1016/j.matpur.2004.09.016.

[31]

Marco Ghimenti and Anna Maria Micheletti, Number and profile of low energy solutions for singularly perturbed Klein-Gordon-Maxwell systems on a Riemannian manifold,, Preprint, (2013). doi: 10.1016/j.jde.2014.01.012.

[32]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, \emph{Comm. Partial Differential Equations}, 6 (1981), 883. doi: 10.1080/03605308108820196.

[33]

David Gilbarg and Neil S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics, (2001).

[34]

Emmanuel Hebey, Solitary waves in critical abelian gauge theories,, \emph{Discrete Contin. Dyn. Syst.}, 32 (2012), 1747. doi: 10.3934/dcds.2012.32.1747.

[35]

Emmanuel Hebey, Compactness and Stability for Nonlinear Elliptic Equations,, European Mathematical Society, (). doi: 10.4171/134.

[36]

Emmanuel Hebey and Juncheng Wei, Resonant states for the static Klein-Gordon-Maxwell-Proca system,, \emph{Math. Res. Lett.}, 19 (2012), 953. doi: 10.4310/MRL.2012.v19.n4.a18.

[37]

Emmanuel Hebey and Juncheng Wei, Schrödinger-Poisson systems in the 3-sphere,, \emph{Calc. Var. Partial Differential Equations}, 47 (2013), 25. doi: 10.1007/s00526-012-0509-0.

[38]

Emmanuel Hebey and Trong Tuong Truong, Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional closed manifolds,, \emph{J. Reine Angew. Math., 667 (2012), 221.

[39]

Emmanuel Hebey and Michel Vaugon, The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds,, \emph{Duke Math. J.}, 79 (1995), 235. doi: 10.1215/S0012-7094-95-07906-X.

[40]

YanYan Li and Lei Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations,, \emph{J. Anal. Math.}, 90 (2003), 27. doi: 10.1007/BF02786551.

[41]

YanYan Li and Lei Zhang, A Harnack type inequality for the Yamabe equation in low dimensions,, \emph{Calc. Var. Partial Differential Equations}, 20 (2004), 133. doi: 10.1007/s00526-003-0224-y.

[42]

YanYan Li and Lei Zhang, Compactness of solutions to the Yamabe problem. II,, \emph{Calc. Var. Partial Differential Equations}, 24 (2005), 185. doi: 10.1007/s00526-004-0320-7.

[43]

Yanyan Li and Meijun Zhu, Yamabe type equations on three-dimensional Riemannian manifolds,, \emph{Commun. Contemp. Math.}, 1 (1999), 1. doi: 10.1142/S021919979900002X.

[44]

Dimitri Mugnai, Coupled Klein-Gordon and Born-Infeld-type equations: looking for solitary waves,, \emph{Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.}, 460 (2004), 1519. doi: 10.1098/rspa.2003.1267.

[45]

Dimitri Mugnai, Solitary waves in abelian gauge theories with strongly nonlinear potentials,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 27 (2010), 1055. doi: 10.1016/j.anihpc.2010.02.001.

[46]

Frédérique Robert and Jérôme Vétois, Examples of non-isolated blow-up for perturbations of the scalar curvature equation,, Preprint, (2012).

[47]

Frédérique Robert and Jérôme Vétois, A General Theorem for the Construction of Blowing-up Solutions to Some Elliptic Nonlinear Equations with Lyapunov-Schmidt's Finite-dimensional Reduction, Cocompact Imbeddings, Profile Decompositions, and their Applications to PDE,, Trends Math., (2013), 85.

[48]

Michael Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities,, \emph{Math. Z.}, 187 (1984), 511. doi: 10.1007/BF01174186.

[49]

Neil S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds,, \emph{Ann. Scuola Norm. Sup. Pisa}, 22 (1968), 265.

[1]

Pietro d’Avenia, Lorenzo Pisani, Gaetano Siciliano. Klein-Gordon-Maxwell systems in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 135-149. doi: 10.3934/dcds.2010.26.135

[2]

Sitong Chen, Xianhua Tang. Improved results for Klein-Gordon-Maxwell systems with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2333-2348. doi: 10.3934/dcds.2018096

[3]

Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271

[4]

Paulo Cesar Carrião, Patrícia L. Cunha, Olímpio Hiroshi Miyagaki. Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents. Communications on Pure & Applied Analysis, 2011, 10 (2) : 709-718. doi: 10.3934/cpaa.2011.10.709

[5]

Baoxiang Wang. Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in $H^s$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 753-763. doi: 10.3934/dcds.1999.5.753

[6]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[7]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[8]

Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065

[9]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[10]

Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure & Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030

[11]

David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327

[12]

Emmanuel Hebey. Solitary waves in critical Abelian gauge theories. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1747-1761. doi: 10.3934/dcds.2012.32.1747

[13]

Soichiro Katayama. Global existence for systems of nonlinear wave and klein-gordon equations with compactly supported initial data. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1479-1497. doi: 10.3934/cpaa.2018071

[14]

Andrew Comech, David Stuart. Small amplitude solitary waves in the Dirac-Maxwell system. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1349-1370. doi: 10.3934/cpaa.2018066

[15]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[16]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[17]

Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389

[18]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[19]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[20]

Hartmut Pecher. Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2203-2219. doi: 10.3934/cpaa.2016034

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]