\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces

Abstract / Introduction Related Papers Cited by
  • We consider the initial value problem associated to the regularized Benjamin-Ono equation, rBO. Our aim is to establish local and global well-posedness results in weighted Sobolev spaces via contraction principle. We also prove a unique continuation property that implies that arbitrary polynomial type decay is not preserved yielding sharp results regarding well-posedness of the initial value problem in most weighted Sobolev spaces.
    Mathematics Subject Classification: Primary: 35B05; Secondary: 35B60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Angulo, M. Scialom and C. Banquet, The regularized Benjamin-Ono and BBM equations: Well-posedness and nonlinear stability, J. Diff. Eqs., 250 (2011), 4011-4036.doi: 10.1016/j.jde.2010.12.016.

    [2]

    J. P. Albert and J. L. Bona, Comparisons between model equations for long waves, J. Nonlinear Sci., 1 (1991), 345-374.doi: 10.1007/BF01238818.

    [3]

    T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.

    [4]

    J. Bona and H. Kalisch, Models for internal waves in deep water, Discrete Contin. Dyn. Syst., 6 (2000), 1-20.doi: 10.3934/dcds.2000.6.1.

    [5]

    H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal. TMA., 4 (1980), 677-681.doi: 10.1016/0362-546X(80)90068-1.

    [6]

    J. Duoandikoetxea, Fourier Analysis, Grad. Studies in Math., 29 Amer. Math. Soc., 2001.

    [7]

    L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega, On uniqueness properties of solutions of the k-generalized KdV equations, J. Funct. Anal., 244 (2007), 504-535.doi: 10.1016/j.jfa.2006.11.004.

    [8]

    L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega, The sharp hardy uncertainty principle for Schrödinger evolutions, Duke Math. J., 155 (2010), 163-187doi: 10.1215/00127094-2010-053.

    [9]

    G. Fonseca and G. Ponce, The I.V.P for the Benjamin-Ono equation in weighted Sobolev spaces, J. Funct. Anal., 260 (2011), 436-459.doi: 10.1016/j.jfa.2010.09.010.

    [10]

    G. Fonseca, F. Linares and G. Ponce, The I.V.P for the Benjamin-Ono equation in weighted Sobolev spaces II, J. Funct. Anal., 262 (2012), 2031-2049.doi: 10.1016/j.jfa.2011.12.017.

    [11]

    G. Fonseca, F. Linares and G. Ponce, The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces, Ann. I. H. Poincaré-AN, 30 (2013), 763-790.doi: 10.1016/j.anihpc.2012.06.006.

    [12]

    R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. AMS., 176 (1973), 227-251.

    [13]

    R. J. Iorio, On the Cauchy problem for the Benjamin-Ono equation, Comm. P. D. E., 11 (1986), 1031-1081.doi: 10.1080/03605308608820456.

    [14]

    R. J. Iorio, Unique continuation principle for the Benjamin-Ono equation, Diff. and Int. Eqs., 16 (2003), 1281-1291.

    [15]

    R. J. Iorio and V. Iorio, Fourier Analysis and Partial Differential Equations, Cambridge University Press, 2001.doi: 10.1017/CBO9780511623745.

    [16]

    H. Kalisch, Error analysis of a spectral projection of the regularized Benjamin-Ono equation, BIT, 45 (2005), 69-89.doi: 10.1007/s10543-005-2636-x.

    [17]

    T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math., 8 (1983), 93-128.

    [18]

    T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.doi: 10.1002/cpa.3160410704.

    [19]

    C. E. Kenig, G. Ponce and L. Vega, On the unique continuation of solutions to the generalized KdV equation, Math. Res. Letters, 10 (2003), 833-846.doi: 10.4310/MRL.2003.v10.n6.a10.

    [20]

    D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 5, 39 (1895), 22-443.

    [21]

    H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not., 30 (2005), 1833-1847.doi: 10.1155/IMRN.2005.1833.

    [22]

    F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext. Springer, 2009.

    [23]

    L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.doi: 10.1137/S0036141001385307.

    [24]

    B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. AMS., 165 (1972), 207-226.

    [25]

    J. Nahas and G. Ponce, On the persistent properties of solutions to semi-linear Schrödinger equation, Comm. P.D.E., 34 (2009), 1208-1227.doi: 10.1080/03605300903129044.

    [26]

    J. Nahas and G. Ponce, On the persistent properties of solutions of nonlinear dispersive equations in weighted Sobolev spaces, RIMS Kokyuroku Bessatsu (RIMS Proceedings), (2011), 23-36.

    [27]

    H. Ono, Algebraic solitary waves on stratified fluids, J. Phy. Soc. Japan, 39 (1975), 1082-1091.

    [28]

    G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Diff. Int. Eqs., 4 (1991), 527-542.

    [29]

    E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc., 67 (1961), 102-104.

    [30]

    E. M. Stein, Harmonic Analysis, Princeton University Press, 1993.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return