Citation: |
[1] |
J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. |
[2] |
J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree-type equations I, Rev. Math. Phys., 12 (2000), 361-429.doi: 10.1142/S0129055X00000137. |
[3] |
J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree-type equations II, Ann. Henri Poincaré, 1 (2000), 753-800.doi: 10.1007/PL00001014. |
[4] |
J. Ginibre and G. Velo, Long range scattering for the Wave-Schrödinger system revisited, J. Diff. Eq., 252 (2012), 1642-1667.doi: 10.1016/j.jde.2011.07.003. |
[5] |
J. Ginibre and G. Velo, Modified wave operators without loss of regularity for some long range Hartree equations I, preprint, Orsay 2012, ArXiv 12054943.doi: 10.1007/s00023-013-0257-5. |
[6] |
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space, Commun. Pure Appl. Anal., 1 (2002), 237-252.doi: 10.3934/cpaa.2002.1.237. |
[7] |
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space II, Ann. Henri Poincaré, 3 (2002), 503-535.doi: 10.1007/s00023-002-8626-5. |
[8] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. |