January  2015, 14(1): 143-166. doi: 10.3934/cpaa.2015.14.143

Convergence of equilibria for incompressible elastic plates in the von Kármán regime

1. 

University of Pittsburgh, Department of Mathematics, 301 Thackeray Hall, Pittsburgh, PA 15260

2. 

2030 Mary Ellen Lane, State College, PA 16803, United States

Received  March 2014 Revised  April 2014 Published  September 2014

We prove convergence of critical points to the nonlinear elastic energies $J^h$ of 3d thin incompressible plates, to critical points of the 2d energy obtained as the $\Gamma$-limit of $J^h$ in the von Kármán scaling regime. The presence of incompressibility constraint requires to restrict the class of admissible test functions to bounded divergence-free variations on the 3d deformations. This poses new technical obstacles, which we resolve by means of introducing 3d extensions and truncations of the 2d limiting deformations, specific to the problem at hand.
Citation: Marta Lewicka, Hui Li. Convergence of equilibria for incompressible elastic plates in the von Kármán regime. Communications on Pure & Applied Analysis, 2015, 14 (1) : 143-166. doi: 10.3934/cpaa.2015.14.143
References:
[1]

J. M. Ball, Minimizers and the Euler-Lagrange equations,, In \emph{Proc. ISIMM conference}, (1983). doi: 10.1007/3-540-12916-2_47.

[2]

J. M. Ball, Some open problems in elasticity,, \emph{Geometry, (2002), 3. doi: 10.1007/0-387-21791-6_1.

[3]

P. G. Ciarlet, Mathematical Elasticity,, North-Holland, (2000).

[4]

P. G. Ciarlet and P. Rabier, Les Equations de von Karman,, \emph{Lecture Notes in Mathematics}, 826 (1980).

[5]

S. Conti and G. Dolzmann, Derivation of a plate theory for incompressible materials,, \emph{C.R. Math. Acad. Sci. Paris}, 344 (2007), 541. doi: 10.1016/j.crma.2007.03.013.

[6]

S. Conti and G. Dolzmann, Gamma-convergence for incompressible elastic plates,, \emph{Calc. Var. PDE}, 34 (2009), 531. doi: 10.1007/s00526-008-0194-1.

[7]

G. Friesecke, R. D. James, M. G. Mora and S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence,, \emph{C. R. Math. Acad. Sci. Paris}, 336 (2003), 697. doi: 10.1016/S1631-073X(03)00028-1.

[8]

G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,, \emph{Comm. Pure Appl. Math.}, 55 (2002), 1461. doi: 10.1002/cpa.10048.

[9]

G. Friesecke, R. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence,, \emph{Arch. Ration. Mech. Anal.}, 180 (2006), 183. doi: 10.1007/s00205-005-0400-7.

[10]

M. Lewicka, A note on the convergence of low energy critical points of nonlinear elasticity functionals, for thin shells of arbitrary geometry,, \emph{ESAIM: Control, 17 (2011), 493. doi: 10.1051/cocv/2010002.

[11]

M. Lewicka, L. Mahadevan and M. R. Pakzad, The Foppl-von Karman equations for plates with incompatible strains,, \emph{Proceedings of the Royal Society A}, 467 (2011), 402. doi: 10.1098/rspa.2010.0138.

[12]

M. Lewicka, L. Mahadevan and M. R. Pakzad, Models for elastic shells with incompatible strains,, \emph{Proceedings of the Royal Society A}, 470 (2014), 1471. doi: 10.1098/rspa.2013.0604.

[13]

M. Lewicka, M. G. Mora and M. R. Pakzad, Shell theories arising as low energy $\Gamma$-limit of 3d nonlinear elasticity,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, Vol. IX (2010), 1.

[14]

M. Lewicka, M. G. Mora and M. R. Pakzad, The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells,, \emph{Arch. Rational Mech. Anal.}, 200 (2011), 1023. doi: 10.1007/s00205-010-0387-6.

[15]

M. Lewicka and M. R. Pakzad, The infinite hierarchy of elastic shell models; some recent results and a conjecture,, \emph{Infinite Dimensional Dynamical Systems, 64 (2013), 407. doi: 10.1007/978-1-4614-4523-4_16.

[16]

M. Lewicka and M. R. Pakzad, Scaling laws for non-Euclidean plates and the $W^{2,2}$ isometric immersions of Riemannian metrics,, \emph{ESAIM: Control, 17 (2011), 1158. doi: 10.1051/cocv/2010039.

[17]

H. Li, Topics in the Mathematical Theory of Nonlinear Elasticity,, Ph. D thesis, (2012).

[18]

H. Li and M. Chermisi, The von Karman theory for incompressible elastic shells,, \emph{Calculus of Variations and PDE}, 48 (2013), 185. doi: 10.1007/s00526-012-0549-5.

[19]

M.G. Mora, S. Muller and M. G. Schultz, Convergence of equilibria of planar thin elastic beams,, \emph{Indiana Univ. Math. J.}, 56 (2007), 2413. doi: 10.1512/iumj.2007.56.3023.

[20]

M. G. Mora and L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density,, \emph{J. Differential Equations}, 252 (2012), 35. doi: 10.1016/j.jde.2011.09.009.

[21]

S. Müller and M. R. Pakzad, Convergence of Equilibria of Thin Elastic Plates-The Von Karman Case,, \emph{Comm. Partial Differential Equations}, 33 (2008), 1018. doi: 10.1080/03605300701629443.

show all references

References:
[1]

J. M. Ball, Minimizers and the Euler-Lagrange equations,, In \emph{Proc. ISIMM conference}, (1983). doi: 10.1007/3-540-12916-2_47.

[2]

J. M. Ball, Some open problems in elasticity,, \emph{Geometry, (2002), 3. doi: 10.1007/0-387-21791-6_1.

[3]

P. G. Ciarlet, Mathematical Elasticity,, North-Holland, (2000).

[4]

P. G. Ciarlet and P. Rabier, Les Equations de von Karman,, \emph{Lecture Notes in Mathematics}, 826 (1980).

[5]

S. Conti and G. Dolzmann, Derivation of a plate theory for incompressible materials,, \emph{C.R. Math. Acad. Sci. Paris}, 344 (2007), 541. doi: 10.1016/j.crma.2007.03.013.

[6]

S. Conti and G. Dolzmann, Gamma-convergence for incompressible elastic plates,, \emph{Calc. Var. PDE}, 34 (2009), 531. doi: 10.1007/s00526-008-0194-1.

[7]

G. Friesecke, R. D. James, M. G. Mora and S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence,, \emph{C. R. Math. Acad. Sci. Paris}, 336 (2003), 697. doi: 10.1016/S1631-073X(03)00028-1.

[8]

G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,, \emph{Comm. Pure Appl. Math.}, 55 (2002), 1461. doi: 10.1002/cpa.10048.

[9]

G. Friesecke, R. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence,, \emph{Arch. Ration. Mech. Anal.}, 180 (2006), 183. doi: 10.1007/s00205-005-0400-7.

[10]

M. Lewicka, A note on the convergence of low energy critical points of nonlinear elasticity functionals, for thin shells of arbitrary geometry,, \emph{ESAIM: Control, 17 (2011), 493. doi: 10.1051/cocv/2010002.

[11]

M. Lewicka, L. Mahadevan and M. R. Pakzad, The Foppl-von Karman equations for plates with incompatible strains,, \emph{Proceedings of the Royal Society A}, 467 (2011), 402. doi: 10.1098/rspa.2010.0138.

[12]

M. Lewicka, L. Mahadevan and M. R. Pakzad, Models for elastic shells with incompatible strains,, \emph{Proceedings of the Royal Society A}, 470 (2014), 1471. doi: 10.1098/rspa.2013.0604.

[13]

M. Lewicka, M. G. Mora and M. R. Pakzad, Shell theories arising as low energy $\Gamma$-limit of 3d nonlinear elasticity,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, Vol. IX (2010), 1.

[14]

M. Lewicka, M. G. Mora and M. R. Pakzad, The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells,, \emph{Arch. Rational Mech. Anal.}, 200 (2011), 1023. doi: 10.1007/s00205-010-0387-6.

[15]

M. Lewicka and M. R. Pakzad, The infinite hierarchy of elastic shell models; some recent results and a conjecture,, \emph{Infinite Dimensional Dynamical Systems, 64 (2013), 407. doi: 10.1007/978-1-4614-4523-4_16.

[16]

M. Lewicka and M. R. Pakzad, Scaling laws for non-Euclidean plates and the $W^{2,2}$ isometric immersions of Riemannian metrics,, \emph{ESAIM: Control, 17 (2011), 1158. doi: 10.1051/cocv/2010039.

[17]

H. Li, Topics in the Mathematical Theory of Nonlinear Elasticity,, Ph. D thesis, (2012).

[18]

H. Li and M. Chermisi, The von Karman theory for incompressible elastic shells,, \emph{Calculus of Variations and PDE}, 48 (2013), 185. doi: 10.1007/s00526-012-0549-5.

[19]

M.G. Mora, S. Muller and M. G. Schultz, Convergence of equilibria of planar thin elastic beams,, \emph{Indiana Univ. Math. J.}, 56 (2007), 2413. doi: 10.1512/iumj.2007.56.3023.

[20]

M. G. Mora and L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density,, \emph{J. Differential Equations}, 252 (2012), 35. doi: 10.1016/j.jde.2011.09.009.

[21]

S. Müller and M. R. Pakzad, Convergence of Equilibria of Thin Elastic Plates-The Von Karman Case,, \emph{Comm. Partial Differential Equations}, 33 (2008), 1018. doi: 10.1080/03605300701629443.

[1]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[2]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[3]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[4]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics & Games, 2019, 0 (0) : 1-19. doi: 10.3934/jdg.2019016

[5]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[6]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[7]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[8]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[9]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[10]

Lucia Scardia, Anja Schlömerkemper, Chiara Zanini. Towards uniformly $\Gamma$-equivalent theories for nonconvex discrete systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 661-686. doi: 10.3934/dcdsb.2012.17.661

[11]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[12]

Eduard Feireisl, Françoise Issard-Roch, Hana Petzeltová. Long-time behaviour and convergence towards equilibria for a conserved phase field model. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 239-252. doi: 10.3934/dcds.2004.10.239

[13]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[14]

Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887

[15]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[16]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[17]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[18]

Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks & Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61

[19]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

[20]

Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]