• Previous Article
    Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line
  • CPAA Home
  • This Issue
  • Next Article
    Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions
2015, 14(5): 2043-2067. doi: 10.3934/cpaa.2015.14.2043

A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains

1. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, P.O. Box 70377, San Juan PR 00936-8377

Received  January 2015 Revised  April 2015 Published  June 2015

Let $\Omega\subset R^N$ be a bounded open set with Lipschitz continuous boundary $\partial \Omega$. We define a fractional Dirichlet-to-Neumann operator and prove that it generates a strongly continuous analytic and compact semigroup on $L^2(\partial \Omega)$ which can also be ultracontractive. We also use the fractional Dirichlet-to-Neumann operator to compare the eigenvalues of a realization in $L^2(\Omega)$ of the fractional Laplace operator with Dirichlet boundary condition and the regional fractional Laplacian with the fractional Neumann boundary conditions.
Citation: Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043
References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften \textbf{314}, 314 (1996). doi: 10.1007/978-3-662-03282-4.

[2]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems,, Second edition. Monographs in Mathematics \textbf{96}, 96 (2011). doi: 10.1007/978-3-0348-0087-7.

[3]

W. Arendt and R. Mazzeo, Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup,, \emph{Commun. Pure Appl. Anal.}, 11 (2012), 2201. doi: 10.3934/cpaa.2012.11.2201.

[4]

W. Arendt and A. F. M. ter Elst, The Dirichlet-to-Neumann operator on rough domains,, \emph{J. Differential Equations}, 251 (2011), 2100. doi: 10.1016/j.jde.2011.06.017.

[5]

W. Arendt, A. F. M. ter Elst, J. B. Kennedy and M. Sauter, The Dirichlet-to-Neumann operator via hidden compactness,, \emph{J. Funct. Anal.}, 266 (2014), 1757. doi: 10.1016/j.jfa.2013.09.012.

[6]

K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes,, \emph{Probab. Theory Related Fields}, 127 (2003), 89. doi: 10.1007/s00440-003-0275-1.

[7]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).

[8]

L. Caffarelli, J-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian,, \emph{J. Eur. Math. Soc.}, 12 (2010), 1151. doi: 10.4171/JEMS/226.

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245. doi: 10.1080/03605300600987306.

[10]

D. Danielli, N. Garofalo and D-M. Nhieu, Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces,, \emph{Mem. Amer. Math. Soc.}, 182 (2006). doi: 10.1090/memo/0857.

[11]

D. Daners, Dirichlet problems on varying domains,, \emph{J. Differential Equations}, 188 (2003), 591. doi: 10.1016/S0022-0396(02)00105-5.

[12]

D. Daners, Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator,, \emph{Positivity}, 18 (2014), 235. doi: 10.1007/s11117-013-0243-7.

[13]

E. B. Davies, Heat Kernels and Spectral Theory,, Cambridge University Press, (1989). doi: 10.1017/CBO9780511566158.

[14]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004.

[15]

Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws,, \emph{Math. Models Methods Appl. Sci.}, 23 (2013), 493. doi: 10.1142/S0218202512500546.

[16]

L. Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 153. doi: 10.1007/BF00375590.

[17]

H. Gimperlein and G. Grubb, Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators,, \emph{J. Evol. Equ.}, 14 (2014), 49. doi: 10.1007/s00028-013-0206-2.

[18]

Q. Y. Guan, Integration by parts formula for regional fractional Laplacian,, \emph{Comm. Math. Phys.}, 266 (2006), 289. doi: 10.1007/s00220-006-0054-9.

[19]

Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians,, \emph{Stoch. Dyn.}, 5 (2005), 385. doi: 10.1142/S021949370500150X.

[20]

W. Hoh and J. Jacob, On the Dirichlet problem for pseudodifferential operators generating Feller semigroups,, \emph{J. Funct. Anal.}, 137 (1996), 19. doi: 10.1006/jfan.1996.0039.

[21]

T. Kato, Perturbation Theory for Linear Operators,, Springer Berlin, (1966).

[22]

E. M. Ouhabaz, Analysis of Heat Equations on Domains,, London Mathematical Society Monographs Series \textbf{31}, 31 (2005).

[23]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275. doi: 10.1016/j.matpur.2013.06.003.

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 2105.

[25]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 144 (2014), 831. doi: 10.1017/S0308210512001783.

[26]

A. F. M. ter Elst and E. M. Ouhabaz, Analysis of the heat kernel of the Dirichlet-to-Neumann operator,, \emph{J. Funct. Anal.}, 267 (2014), 4066. doi: 10.1016/j.jfa.2014.09.001.

[27]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets,, \emph{Potential Anal.}, 42 (2015), 499. doi: 10.1007/s11118-014-9443-4.

show all references

References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften \textbf{314}, 314 (1996). doi: 10.1007/978-3-662-03282-4.

[2]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems,, Second edition. Monographs in Mathematics \textbf{96}, 96 (2011). doi: 10.1007/978-3-0348-0087-7.

[3]

W. Arendt and R. Mazzeo, Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup,, \emph{Commun. Pure Appl. Anal.}, 11 (2012), 2201. doi: 10.3934/cpaa.2012.11.2201.

[4]

W. Arendt and A. F. M. ter Elst, The Dirichlet-to-Neumann operator on rough domains,, \emph{J. Differential Equations}, 251 (2011), 2100. doi: 10.1016/j.jde.2011.06.017.

[5]

W. Arendt, A. F. M. ter Elst, J. B. Kennedy and M. Sauter, The Dirichlet-to-Neumann operator via hidden compactness,, \emph{J. Funct. Anal.}, 266 (2014), 1757. doi: 10.1016/j.jfa.2013.09.012.

[6]

K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes,, \emph{Probab. Theory Related Fields}, 127 (2003), 89. doi: 10.1007/s00440-003-0275-1.

[7]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).

[8]

L. Caffarelli, J-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian,, \emph{J. Eur. Math. Soc.}, 12 (2010), 1151. doi: 10.4171/JEMS/226.

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245. doi: 10.1080/03605300600987306.

[10]

D. Danielli, N. Garofalo and D-M. Nhieu, Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces,, \emph{Mem. Amer. Math. Soc.}, 182 (2006). doi: 10.1090/memo/0857.

[11]

D. Daners, Dirichlet problems on varying domains,, \emph{J. Differential Equations}, 188 (2003), 591. doi: 10.1016/S0022-0396(02)00105-5.

[12]

D. Daners, Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator,, \emph{Positivity}, 18 (2014), 235. doi: 10.1007/s11117-013-0243-7.

[13]

E. B. Davies, Heat Kernels and Spectral Theory,, Cambridge University Press, (1989). doi: 10.1017/CBO9780511566158.

[14]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004.

[15]

Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws,, \emph{Math. Models Methods Appl. Sci.}, 23 (2013), 493. doi: 10.1142/S0218202512500546.

[16]

L. Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 153. doi: 10.1007/BF00375590.

[17]

H. Gimperlein and G. Grubb, Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators,, \emph{J. Evol. Equ.}, 14 (2014), 49. doi: 10.1007/s00028-013-0206-2.

[18]

Q. Y. Guan, Integration by parts formula for regional fractional Laplacian,, \emph{Comm. Math. Phys.}, 266 (2006), 289. doi: 10.1007/s00220-006-0054-9.

[19]

Q. Y. Guan and Z. M. Ma, Boundary problems for fractional Laplacians,, \emph{Stoch. Dyn.}, 5 (2005), 385. doi: 10.1142/S021949370500150X.

[20]

W. Hoh and J. Jacob, On the Dirichlet problem for pseudodifferential operators generating Feller semigroups,, \emph{J. Funct. Anal.}, 137 (1996), 19. doi: 10.1006/jfan.1996.0039.

[21]

T. Kato, Perturbation Theory for Linear Operators,, Springer Berlin, (1966).

[22]

E. M. Ouhabaz, Analysis of Heat Equations on Domains,, London Mathematical Society Monographs Series \textbf{31}, 31 (2005).

[23]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275. doi: 10.1016/j.matpur.2013.06.003.

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 2105.

[25]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 144 (2014), 831. doi: 10.1017/S0308210512001783.

[26]

A. F. M. ter Elst and E. M. Ouhabaz, Analysis of the heat kernel of the Dirichlet-to-Neumann operator,, \emph{J. Funct. Anal.}, 267 (2014), 4066. doi: 10.1016/j.jfa.2014.09.001.

[27]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets,, \emph{Potential Anal.}, 42 (2015), 499. doi: 10.1007/s11118-014-9443-4.

[1]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[2]

Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209

[3]

Tadeusz Kulczycki, Robert Stańczy. Multiple solutions for Dirichlet nonlinear BVPs involving fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2581-2591. doi: 10.3934/dcdsb.2014.19.2581

[4]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[5]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[6]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[7]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[8]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[9]

Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175

[10]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[11]

Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393

[12]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[13]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[14]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[15]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[16]

Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947

[17]

Chenchen Mou. Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2335-2362. doi: 10.3934/cpaa.2015.14.2335

[18]

Juan-Luis Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 857-885. doi: 10.3934/dcdss.2014.7.857

[19]

Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373

[20]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]