November  2015, 14(6): 2151-2168. doi: 10.3934/cpaa.2015.14.2151

Homogenization of bending theory for plates; the case of oscillations in the direction of thickness

1. 

University of Zagreb, Faculty of Science and Mathematics, Bijenička 30, 10 000 Zagreb, Croatia

2. 

University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10 000 Zagreb, Croatia

Received  October 2014 Revised  August 2015 Published  September 2015

In this paper we study the homogenization effects on the model of elastic plate in the bending regime, under the assumption that the energy density (material) oscillates in the direction of thickness. We study two different cases. First, we show, starting from 3D elasticity, by means of $\Gamma$-convergence and under general (not necessarily periodic) assumption, that the effective behavior of the limit is not influenced by oscillations in the direction of thickness. In the second case, we study periodic in-plane oscillations of the energy density coupled with periodic oscillations in the direction of thickness. In contrast to the first case we show that there are homogenization effects coming also from the oscillations in the direction of thickness.
Citation: Maroje Marohnić, Igor Velčić. Homogenization of bending theory for plates; the case of oscillations in the direction of thickness. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2151-2168. doi: 10.3934/cpaa.2015.14.2151
References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084.

[2]

J. M. Arrieta and M. C. Pereira., Homogenization in a thin domain with an oscillatory boundary,, J. Math. Pures Appl., 96 (2011), 29. doi: 10.1016/j.matpur.2011.02.003.

[3]

M. Bocea and I. Fonseca, Equi-integrability results for 3D-2D dimension reduction problems,, ESAIM Control Optim. Calc. Var., 7 (2002), 443. doi: 10.1051/cocv:2002063.

[4]

A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films,, Indiana Univ. Math. J., 49 (2000), 1367. doi: 10.1512/iumj.2000.49.1822.

[5]

A. Braides and C. I. Zeppieri, A note on equi-integrability in dimension reduction problems,, Calc. Var. Partial Differential Equations, 29 (2007), 231. doi: 10.1007/s00526-006-0065-6.

[6]

P. Courilleau and J. Mossino, Compensated compactness for nonlinear homogenization and reduction of dimension,, Calc. Var. Partial Differential Equations, 20 (2004), 65. doi: 10.1007/s00526-003-0228-7.

[7]

G. Friesecke, R. D. James, and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,, Comm. Pure Appl. Math., 55 (2002), 1461. doi: 10.1002/cpa.10048.

[8]

G. Friesecke, R. D. James, and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence,, Arch. Ration. Mech. Anal., 180 (2006), 183. doi: 10.1007/s00205-005-0400-7.

[9]

B. Gustafsson and J. Mossino, Compensated compactness for homogenization and reduction of dimension: the case of elastic laminates,, Asymptot. Anal., 47 (2006), 139.

[10]

P. Hornung, S. Neukamm and I. Velčić, Derivation of a homogenized nonlinear plate theory from 3d elasticity,, Calc. Var. Partial Differential Equations, 51 (2014), 677. doi: 10.1007/s00526-013-0691-8.

[11]

Peter Hornung, Approximation of flat $W^{2,2}$ isometric immersions by smooth ones,, Arch. Ration. Mech. Anal., 199 (2011), 1015. doi: 10.1007/s00205-010-0374-y.

[12]

P. Hornung and I. Velčić, Derivation of a homogenized von-Kármán shell theory from 3d elasticity,, accepted in Annales de l'Institut Henri Poincare (C) Non Linear Analysis., (). doi: 10.1016/j.anihpc.2014.05.003.

[13]

M. Jurak and Z. Tutek, A one-dimensional model of homogenized rod,, Glas. Mat. Ser. III, 24 (1989), 271.

[14]

H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity,, J. Math. Pures Appl., 74 (1995), 549.

[15]

M. Marohnić and I. Velčić, Non-periodic homogenization of bending-torsion theory for inextensible rods from 3d elasticity,, accepted in Annali di Matematica Pura ed Applicata., (). doi: 10.1007/s10231-015-0504-0.

[16]

S. Neukamm, Homogenization, Linearization and Dimension Reduction in Elasticity with Variational Methods,, Phd thesis, (2010).

[17]

S. Neukamm, Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from three-dimensional elasticity,, Arch. Ration. Mech. Anal., 206 (2012), 645. doi: 10.1007/s00205-012-0539-y.

[18]

S. Neukamm and H. Olbermann, Homogenization of the nonlinear bending theory for plates,, Calc. Var. Partial Differential Equations, 53 (2015), 719. doi: 10.1007/s00526-014-0765-2.

[19]

S. Neukamm and I. Velčić, Derivation of a homogenized von Kármán plate theory from 3D elasticity,, M3AS, 23 (2013), 2701. doi: 10.1142/S0218202513500449.

[20]

B. Schmidt, Plate theory for stressed heterogeneous multilayers of finite bending energy,, J. Math. Pures Appl., 88 (2007), 107. doi: 10.1016/j.matpur.2007.04.011.

[21]

I. Velčić, On the general homogenization of von Kármán plate equations from 3d nonlinear elasticity,, accepted in Analysis and Applications., (). doi: 10.1142/S0219530515500244.

[22]

I. Velčić, Periodically wrinkled plate of Föppl von Kármán type,, Ann. Sc. Norm. Super. Pisa Cl. Sci.(5), 12 (2013), 275.

[23]

I. Velčić, On the derivation of homogenized bending plate model,, Calc. Var. Partial Differential Equations, 53 (2015), 561. doi: 10.1007/s00526-014-0758-1.

[24]

A. Visintin, Towards a two-scale calculus,, ESAIM Control Optim. Calc. Var., 12 (2006), 371. doi: 10.1051/cocv:2006012.

[25]

A. Visintin, Two-scale convergence of some integral functionals,, Calc. Var. Partial Differential Equations, 29 (2007), 239. doi: 10.1007/s00526-006-0068-3.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084.

[2]

J. M. Arrieta and M. C. Pereira., Homogenization in a thin domain with an oscillatory boundary,, J. Math. Pures Appl., 96 (2011), 29. doi: 10.1016/j.matpur.2011.02.003.

[3]

M. Bocea and I. Fonseca, Equi-integrability results for 3D-2D dimension reduction problems,, ESAIM Control Optim. Calc. Var., 7 (2002), 443. doi: 10.1051/cocv:2002063.

[4]

A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films,, Indiana Univ. Math. J., 49 (2000), 1367. doi: 10.1512/iumj.2000.49.1822.

[5]

A. Braides and C. I. Zeppieri, A note on equi-integrability in dimension reduction problems,, Calc. Var. Partial Differential Equations, 29 (2007), 231. doi: 10.1007/s00526-006-0065-6.

[6]

P. Courilleau and J. Mossino, Compensated compactness for nonlinear homogenization and reduction of dimension,, Calc. Var. Partial Differential Equations, 20 (2004), 65. doi: 10.1007/s00526-003-0228-7.

[7]

G. Friesecke, R. D. James, and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,, Comm. Pure Appl. Math., 55 (2002), 1461. doi: 10.1002/cpa.10048.

[8]

G. Friesecke, R. D. James, and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence,, Arch. Ration. Mech. Anal., 180 (2006), 183. doi: 10.1007/s00205-005-0400-7.

[9]

B. Gustafsson and J. Mossino, Compensated compactness for homogenization and reduction of dimension: the case of elastic laminates,, Asymptot. Anal., 47 (2006), 139.

[10]

P. Hornung, S. Neukamm and I. Velčić, Derivation of a homogenized nonlinear plate theory from 3d elasticity,, Calc. Var. Partial Differential Equations, 51 (2014), 677. doi: 10.1007/s00526-013-0691-8.

[11]

Peter Hornung, Approximation of flat $W^{2,2}$ isometric immersions by smooth ones,, Arch. Ration. Mech. Anal., 199 (2011), 1015. doi: 10.1007/s00205-010-0374-y.

[12]

P. Hornung and I. Velčić, Derivation of a homogenized von-Kármán shell theory from 3d elasticity,, accepted in Annales de l'Institut Henri Poincare (C) Non Linear Analysis., (). doi: 10.1016/j.anihpc.2014.05.003.

[13]

M. Jurak and Z. Tutek, A one-dimensional model of homogenized rod,, Glas. Mat. Ser. III, 24 (1989), 271.

[14]

H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity,, J. Math. Pures Appl., 74 (1995), 549.

[15]

M. Marohnić and I. Velčić, Non-periodic homogenization of bending-torsion theory for inextensible rods from 3d elasticity,, accepted in Annali di Matematica Pura ed Applicata., (). doi: 10.1007/s10231-015-0504-0.

[16]

S. Neukamm, Homogenization, Linearization and Dimension Reduction in Elasticity with Variational Methods,, Phd thesis, (2010).

[17]

S. Neukamm, Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from three-dimensional elasticity,, Arch. Ration. Mech. Anal., 206 (2012), 645. doi: 10.1007/s00205-012-0539-y.

[18]

S. Neukamm and H. Olbermann, Homogenization of the nonlinear bending theory for plates,, Calc. Var. Partial Differential Equations, 53 (2015), 719. doi: 10.1007/s00526-014-0765-2.

[19]

S. Neukamm and I. Velčić, Derivation of a homogenized von Kármán plate theory from 3D elasticity,, M3AS, 23 (2013), 2701. doi: 10.1142/S0218202513500449.

[20]

B. Schmidt, Plate theory for stressed heterogeneous multilayers of finite bending energy,, J. Math. Pures Appl., 88 (2007), 107. doi: 10.1016/j.matpur.2007.04.011.

[21]

I. Velčić, On the general homogenization of von Kármán plate equations from 3d nonlinear elasticity,, accepted in Analysis and Applications., (). doi: 10.1142/S0219530515500244.

[22]

I. Velčić, Periodically wrinkled plate of Föppl von Kármán type,, Ann. Sc. Norm. Super. Pisa Cl. Sci.(5), 12 (2013), 275.

[23]

I. Velčić, On the derivation of homogenized bending plate model,, Calc. Var. Partial Differential Equations, 53 (2015), 561. doi: 10.1007/s00526-014-0758-1.

[24]

A. Visintin, Towards a two-scale calculus,, ESAIM Control Optim. Calc. Var., 12 (2006), 371. doi: 10.1051/cocv:2006012.

[25]

A. Visintin, Two-scale convergence of some integral functionals,, Calc. Var. Partial Differential Equations, 29 (2007), 239. doi: 10.1007/s00526-006-0068-3.

[1]

Antoine Gloria Cermics. A direct approach to numerical homogenization in finite elasticity. Networks & Heterogeneous Media, 2006, 1 (1) : 109-141. doi: 10.3934/nhm.2006.1.109

[2]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[3]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[4]

Jean-François Babadjian, Francesca Prinari, Elvira Zappale. Dimensional reduction for supremal functionals. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1503-1535. doi: 10.3934/dcds.2012.32.1503

[5]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[6]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[7]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[8]

Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787

[9]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[10]

Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks & Heterogeneous Media, 2014, 9 (4) : 709-737. doi: 10.3934/nhm.2014.9.709

[11]

Frédéric Legoll, William Minvielle. Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 1-27. doi: 10.3934/dcdss.2015.8.1

[12]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[13]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Singularly perturbed diffusion-advection-reaction processes on extremely large three-dimensional curvilinear networks with a periodic microstructure -- efficient solution strategies based on homogenization theory. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 183-219. doi: 10.3934/naco.2016008

[14]

Baowei Feng. On the decay rates for a one-dimensional porous elasticity system with past history. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2905-2921. doi: 10.3934/cpaa.2019130

[15]

Michael Eden, Michael Böhm. Homogenization of a poro-elasticity model coupled with diffusive transport and a first order reaction for concrete. Networks & Heterogeneous Media, 2014, 9 (4) : 599-615. doi: 10.3934/nhm.2014.9.599

[16]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[17]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[18]

L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395

[19]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2301-2328. doi: 10.3934/cpaa.2016038

[20]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]