2015, 14(1): 285-311. doi: 10.3934/cpaa.2015.14.285

Global gradient estimates in elliptic problems under minimal data and domain regularity

1. 

Dipartimento di Matematica "U.Dini", Università di Firenze, Piazza Ghiberti 27, 50122 Firenze

2. 

Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden

Received  February 2014 Revised  March 2014 Published  September 2014

This is a survey of some recent contributions by the authors on global integrability properties of the gradient of solutions to boundary value problems for nonlinear elliptic equations in divergence form. Minimal assumptions on the regularity of the ground domain and of the prescribed data are pursued.
Citation: Andrea Cianchi, Vladimir Maz'ya. Global gradient estimates in elliptic problems under minimal data and domain regularity. Communications on Pure & Applied Analysis, 2015, 14 (1) : 285-311. doi: 10.3934/cpaa.2015.14.285
References:
[1]

A. Alvino, A. Cianchi, V. Maz'ya and A. Mercaldo, Well-posed elliptic Neumann problems involving irregular data and domains,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 27 (2010), 1017. doi: 10.1016/j.anihpc.2010.01.010.

[2]

A. Alvino, V. Ferone and G.Trombetti, Estimates for the gradient of solutions of nonlinear elliptic equations with $L^1$ data,, \emph{Ann. Mat. Pura Appl.}, 178 (2000), 129. doi: 10.1007/BF02505892.

[3]

A. Alvino and A. Mercaldo, Nonlinear elliptic problems with $L^1$ data: an approach via symmetrization methods,, \emph{Mediter. J. Math.}, 5 (): 173. doi: 10.1007/s00009-008-0142-5.

[4]

A. Ancona, Elliptic operators, conormal derivatives, and positive parts of functions (with an appendix by Haim Brezis),, \emph{J. Funct. Anal.}, 257 (2009), 2124. doi: 10.1016/j.jfa.2008.12.019.

[5]

A. Banerjee and J. Lewis, Gradient bounds for $p$-harmonic systems with vanishing Neumann data in a convex domain,, preprint., (). doi: 10.1016/j.na.2014.01.009.

[6]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, \emph{Ann. Sc. Norm. Sup. Pisa}, 22 (1995), 241.

[7]

C. Bennett and R. Sharpley, Interpolation of Operators,, Academic Press, (1988).

[8]

A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications,, Springer-Verlag, (2002). doi: 10.1007/978-3-662-12905-0.

[9]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data,, \emph{J. Funct. Anal.}, 87 (1989), 149. doi: 10.1016/0022-1236(89)90005-0.

[10]

Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities,, Springer-Verlag, (1988). doi: 10.1007/978-3-662-07441-1.

[11]

M. Carro, L. Pick, J. Soria and V. D. Stepanov, On embeddings between classical Lorentz spaces,, \emph{Math. Inequal. Appl.}, 4 (2001), 397. doi: 10.7153/mia-04-37.

[12]

J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian,, in \emph{Problems in Analysis} (Papers dedicated to Salomon Bochner, (1970), 195.

[13]

A. Cianchi, On relative isoperimetric inequalities in the plane,, \emph{Boll. Un. Mat. Ital.}, 3-B (1989), 289.

[14]

A. Cianchi, Elliptic equations on manifolds and isoperimetric inequalities,, \emph{Proc. Royal Soc. Edinburgh Sect A}, 114 (1990), 213. doi: 10.1017/S0308210500024392.

[15]

A. Cianchi, Maximizing the $L^\infty$ norm of the gradient of solutions to the Poisson equation,, \emph{J. Geom. Anal.}, 2 (1992), 499. doi: 10.1007/BF02921575.

[16]

A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces,, \emph{Indiana Univ. Math. J.}, 45 (1996), 39. doi: 10.1512/iumj.1996.45.1958.

[17]

A. Cianchi, Boundedness of solutions to variational problems under general growth conditions,, \emph{Comm. Part. Diff. Eq.}, 22 (1997), 1629. doi: 10.1080/03605309708821313.

[18]

A. Cianchi, Moser-Trudinger inequalities without boundary conditions and isoperimetric problems,, \emph{Indiana Univ. Math. J.}, 54 (2005), 669. doi: 10.1512/iumj.2005.54.2589.

[19]

A. Cianchi and V. Maz'ya, Neumann problems and isocapacitary inequalites,, \emph{J. Math. Pures Appl.}, 89 (2008), 71. doi: 10.1016/j.matpur.2007.10.001.

[20]

A. Cianchi and V. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations,, \emph{Comm. Part. Diff. Equat.}, 36 (2011), 100. doi: 10.1080/03605301003657843.

[21]

A. Cianchi and V. Maz'ya, On the discreteness of the spectrum of the Laplacian on noncompact Riemannian manifolds,, \emph{J. Differential Geom.}, 87 (2011), 469.

[22]

A. Cianchi and V. Maz'ya, Boundedness of solutions to the Schrödinger equation under Neumann boundary conditions,, \emph{J. Math. Pures Appl.}, 98 (2012), 654. doi: 10.1016/j.matpur.2012.05.007.

[23]

A. Cianchi and V. Maz'ya, Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds,, \emph{Amer. J. Math.}, 135 (2013), 579. doi: 10.1353/ajm.2013.0028.

[24]

A. Cianchi and V. Maz'ya, Global boundedness of the gradient for a class of nonlinear elliptic systems,, \emph{Arch. Ration. Mech. Anal.}, 212 (2014), 129. doi: 10.1007/s00205-013-0705-x.

[25]

A. Cianchi and V. Maz'ya, Gradient regularity via rearrangements for $p$-Laplacian type elliptic problem,, \emph{J. Europ. Math. Soc.}, 16 (2014), 571. doi: 10.4171/JEMS/440.

[26]

A. Cianchi and L. Pick, Sobolev embeddings into $BMO$, $VMO$ and $L^{\infty}$,, \emph{Arkiv Mat.}, 36 (1998), 317. doi: 10.1007/BF02384772.

[27]

R. Courant and D. Hilbert, Methoden der mathematischen Physik,, Springer-Verlag, (1937).

[28]

A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations,, \emph{Ann. Mat. Pura Appl.}, 170 (1996), 207. doi: 10.1007/BF01758989.

[29]

G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, \emph{Ann. Sc. Norm. Sup. Pisa Cl. Sci.}, 28 (1999), 741.

[30]

E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico,, \emph{Boll. Un. Mat. Ital.}, 1 (1968), 135.

[31]

T. Del Vecchio, Nonlinear elliptic equations with measure data,, \emph{Potential Anal.}, 4 (1995), 185. doi: 10.1007/BF01275590.

[32]

G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right-hand side,, \emph{J. Reine Angew. Math.}, 520 (2000), 1. doi: 10.1515/crll.2000.022.

[33]

F. Duzaar and G. Mingione, Local Lipschitz regularity for degenerate elliptic systems,, \emph{Ann. Inst. Henri Poincar\'e}, 27 (2010), 1361. doi: 10.1016/j.anihpc.2010.07.002.

[34]

F. Duzaar and G. Mingione, Gradient continuity estimates,, \emph{Calc. Var. Part. Diff. Equat.}, 39 (2010), 379. doi: 10.1007/s00526-010-0314-6.

[35]

S. Gallot, Inégalités isopérimétriques et analitiques sur les variétés riemanniennes,, \emph{Asterisque}, 163 (1988), 31.

[36]

M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,, Annals of Mathematical Studies, (1983).

[37]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2$^{nd}$ edition, (1983). doi: 10.1007/978-3-642-61798-0.

[38]

E. Giusti, Direct Methods in the Calculus of Variations,, World Scientific, (2003). doi: 10.1142/9789812795557.

[39]

E. Giusti and M. Miranda, Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni,, \emph{Boll. Un. Mat. Ital.}, 1 (1968), 219.

[40]

P. Haiłasz and P. Koskela, Isoperimetric inequalites and imbedding theorems in irregular domains,, \emph{J. London Math. Soc.}, 58 (1998), 425. doi: 10.1112/S0024610798006346.

[41]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE,, Lecture Notes in Math., 1150 (1150).

[42]

S. Kesavan, Symmetrization & Applications,, Series in Analysis 3, (2006). doi: 10.1142/9789812773937.

[43]

T. Kilpeläinen and J. Malý, Sobolev inequalities on sets with irregular boundaries,, \emph{Z. Anal. Anwendungen}, 19 (2000), 369. doi: 10.4171/ZAA/956.

[44]

V. A. Kozlov, V. G. Maz'ya and J. Rossman, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations,, Math. Surveys Monographs 52, (1997).

[45]

I. N. Krol' and V. G. Maz'ya, On the absence of continuity and Hölder continuity of solutions of quasilinear elliptic equations near a nonregular boundary,, \emph{Trudy Moskov. Mat. Os\vs\vc.}, 26 (1972), 73.

[46]

T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory,, \emph{Arch. Ration. Mech. Anal.}, 207 (2013), 215. doi: 10.1007/s00205-012-0562-z.

[47]

T. Kuusi and G. Mingione, A nonlinear Stein theorem,, \emph{Calc. Var. Part. Diff. Equat.}, ().

[48]

D. A. Labutin, Embedding of Sobolev spaces on Hölder domains,, \emph{Proc. Steklov Inst. Math.}, 227 (1999), 163.

[49]

O. A. Ladyzenskaya and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).

[50]

G. M. Lieberman, The Dirichlet problem for quasilinear elliptic equations with continuously differentiable data,, \emph{Comm. Part. Diff. Eq.}, 11 (1986), 167. doi: 10.1080/03605308608820422.

[51]

G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions,, \emph{Ann. Mat. Pura Appl.}, 148 (1987), 77. doi: 10.1007/BF01774284.

[52]

G. M. Lieberman, The natural generalization of the natural conditions of Ladyzenskaya and Ural'ceva for elliptic equations,, \emph{Comm. Part. Diff. Eq.}, 16 (1991), 311. doi: 10.1080/03605309108820761.

[53]

G. M. Lieberman, The conormal derivative problem for equations of variational type in nonsmooth domains,, \emph{Trans. Amer. Math. Soc.}, 330 (1992), 41. doi: 10.2307/2154153.

[54]

P.-L. Lions and F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires,, manuscript., ().

[55]

P.-L. Lions and F. Pacella, Isoperimetric inequalities for convex cones,, \emph{Proc. Amer. Math. Soc.}, 109 (1990), 477. doi: 10.2307/2048011.

[56]

C. Maderna and S. Salsa, A priori bounds in non-linear Neumann problems,, \emph{Boll. Un. Mat. Ital.}, 16 (1979), 1144.

[57]

J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations,, American Mathematical Society, (1997). doi: 10.1090/surv/051.

[58]

V. G. Maz'ya, Classes of regions and imbedding theorems for function spaces,, \emph{Dokl. Akad. Nauk. SSSR}, 133 (1960), 527.

[59]

V. G. Maz'ya, p-conductivity and theorems on embedding certain functional spaces into a C-space,, \emph{Dokl. Akad. Nauk. SSSR}, 140 (1961), 299.

[60]

V. G. Maz'ya, Some estimates of solutions of second-order elliptic equations,, \emph{Dokl. Akad. Nauk. SSSR}, 137 (1961), 1057.

[61]

V. G. Maz'ya, On weak solutions of the Dirichlet and Neumann problems,, \emph{Trusdy Moskov. Mat. Ob\v s\v c.}, 20 (1969), 137.

[62]

V. G. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, Springer, (2011). doi: 10.1007/978-3-642-15564-2.

[63]

V. G. Maz'ya and S. V. Poborchi, Differentiable Functions on Bad Domains,, World Scientific, (1997).

[64]

N. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations,, \emph{Ann. Scuola Norm. Sup. Pisa}, 17 (1963), 189.

[65]

G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations,, \emph{Appl. Math.}, 51 (2006), 355. doi: 10.1007/s10778-006-0110-3.

[66]

G. Mingione, Gradient estimates below the duality exponent,, \emph{Math. Ann.}, 346 (2010), 571. doi: 10.1007/s00208-009-0411-z.

[67]

C. B. Morrey, Multiple Integrals in the Calculus of Variations,, Springer-Verlag, (1966).

[68]

F. Murat, Soluciones renormalizadas de EDP elipticas no lineales,, Preprint 93023 (Spanish), (1993).

[69]

F. Murat, Équations elliptiques non linéaires avec second membre $L^1$ ou mesure,, in \emph{Actes du 26\`eme Congr\'es National d'Analyse Num\'erique, (1994).

[70]

J. Nečas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity,, in \emph{Theor. Nonlin. Oper., (1975), 197.

[71]

R. O'Neil, Convolution operators in $L(p,q)$ spaces,, \emph{Duke Math. J.}, 30 (1963), 129.

[72]

B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces,, \emph{Math. Ineq. Appl.}, 2 (1999), 391. doi: 10.7153/mia-02-35.

[73]

J. Serrin, Pathological solutions of elliptic partial differential equations,, \emph{Ann. Scuola Norm. Sup. Pisa}, 18 (1964), 385.

[74]

V. Sverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex variational integrals,, \emph{Proc. Natl. Acad. Sci. USA}, 99 (2002), 15269. doi: 10.1073/pnas.222494699.

[75]

G. Talenti, Elliptic equations and rearrangements,, \emph{Ann. Sc. Norm. Sup. Pisa}, 3 (1976), 697.

[76]

G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces,, \emph{Ann. Mat. Pura Appl.}, 120 (1979), 159. doi: 10.1007/BF02411942.

[77]

G. Trombetti, Symmetrization methods for partial differential equations,, \emph{Boll. Un. Mat. Ital.}, 3-B (2000), 601.

show all references

References:
[1]

A. Alvino, A. Cianchi, V. Maz'ya and A. Mercaldo, Well-posed elliptic Neumann problems involving irregular data and domains,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 27 (2010), 1017. doi: 10.1016/j.anihpc.2010.01.010.

[2]

A. Alvino, V. Ferone and G.Trombetti, Estimates for the gradient of solutions of nonlinear elliptic equations with $L^1$ data,, \emph{Ann. Mat. Pura Appl.}, 178 (2000), 129. doi: 10.1007/BF02505892.

[3]

A. Alvino and A. Mercaldo, Nonlinear elliptic problems with $L^1$ data: an approach via symmetrization methods,, \emph{Mediter. J. Math.}, 5 (): 173. doi: 10.1007/s00009-008-0142-5.

[4]

A. Ancona, Elliptic operators, conormal derivatives, and positive parts of functions (with an appendix by Haim Brezis),, \emph{J. Funct. Anal.}, 257 (2009), 2124. doi: 10.1016/j.jfa.2008.12.019.

[5]

A. Banerjee and J. Lewis, Gradient bounds for $p$-harmonic systems with vanishing Neumann data in a convex domain,, preprint., (). doi: 10.1016/j.na.2014.01.009.

[6]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, \emph{Ann. Sc. Norm. Sup. Pisa}, 22 (1995), 241.

[7]

C. Bennett and R. Sharpley, Interpolation of Operators,, Academic Press, (1988).

[8]

A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications,, Springer-Verlag, (2002). doi: 10.1007/978-3-662-12905-0.

[9]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data,, \emph{J. Funct. Anal.}, 87 (1989), 149. doi: 10.1016/0022-1236(89)90005-0.

[10]

Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities,, Springer-Verlag, (1988). doi: 10.1007/978-3-662-07441-1.

[11]

M. Carro, L. Pick, J. Soria and V. D. Stepanov, On embeddings between classical Lorentz spaces,, \emph{Math. Inequal. Appl.}, 4 (2001), 397. doi: 10.7153/mia-04-37.

[12]

J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian,, in \emph{Problems in Analysis} (Papers dedicated to Salomon Bochner, (1970), 195.

[13]

A. Cianchi, On relative isoperimetric inequalities in the plane,, \emph{Boll. Un. Mat. Ital.}, 3-B (1989), 289.

[14]

A. Cianchi, Elliptic equations on manifolds and isoperimetric inequalities,, \emph{Proc. Royal Soc. Edinburgh Sect A}, 114 (1990), 213. doi: 10.1017/S0308210500024392.

[15]

A. Cianchi, Maximizing the $L^\infty$ norm of the gradient of solutions to the Poisson equation,, \emph{J. Geom. Anal.}, 2 (1992), 499. doi: 10.1007/BF02921575.

[16]

A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces,, \emph{Indiana Univ. Math. J.}, 45 (1996), 39. doi: 10.1512/iumj.1996.45.1958.

[17]

A. Cianchi, Boundedness of solutions to variational problems under general growth conditions,, \emph{Comm. Part. Diff. Eq.}, 22 (1997), 1629. doi: 10.1080/03605309708821313.

[18]

A. Cianchi, Moser-Trudinger inequalities without boundary conditions and isoperimetric problems,, \emph{Indiana Univ. Math. J.}, 54 (2005), 669. doi: 10.1512/iumj.2005.54.2589.

[19]

A. Cianchi and V. Maz'ya, Neumann problems and isocapacitary inequalites,, \emph{J. Math. Pures Appl.}, 89 (2008), 71. doi: 10.1016/j.matpur.2007.10.001.

[20]

A. Cianchi and V. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations,, \emph{Comm. Part. Diff. Equat.}, 36 (2011), 100. doi: 10.1080/03605301003657843.

[21]

A. Cianchi and V. Maz'ya, On the discreteness of the spectrum of the Laplacian on noncompact Riemannian manifolds,, \emph{J. Differential Geom.}, 87 (2011), 469.

[22]

A. Cianchi and V. Maz'ya, Boundedness of solutions to the Schrödinger equation under Neumann boundary conditions,, \emph{J. Math. Pures Appl.}, 98 (2012), 654. doi: 10.1016/j.matpur.2012.05.007.

[23]

A. Cianchi and V. Maz'ya, Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds,, \emph{Amer. J. Math.}, 135 (2013), 579. doi: 10.1353/ajm.2013.0028.

[24]

A. Cianchi and V. Maz'ya, Global boundedness of the gradient for a class of nonlinear elliptic systems,, \emph{Arch. Ration. Mech. Anal.}, 212 (2014), 129. doi: 10.1007/s00205-013-0705-x.

[25]

A. Cianchi and V. Maz'ya, Gradient regularity via rearrangements for $p$-Laplacian type elliptic problem,, \emph{J. Europ. Math. Soc.}, 16 (2014), 571. doi: 10.4171/JEMS/440.

[26]

A. Cianchi and L. Pick, Sobolev embeddings into $BMO$, $VMO$ and $L^{\infty}$,, \emph{Arkiv Mat.}, 36 (1998), 317. doi: 10.1007/BF02384772.

[27]

R. Courant and D. Hilbert, Methoden der mathematischen Physik,, Springer-Verlag, (1937).

[28]

A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations,, \emph{Ann. Mat. Pura Appl.}, 170 (1996), 207. doi: 10.1007/BF01758989.

[29]

G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, \emph{Ann. Sc. Norm. Sup. Pisa Cl. Sci.}, 28 (1999), 741.

[30]

E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico,, \emph{Boll. Un. Mat. Ital.}, 1 (1968), 135.

[31]

T. Del Vecchio, Nonlinear elliptic equations with measure data,, \emph{Potential Anal.}, 4 (1995), 185. doi: 10.1007/BF01275590.

[32]

G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right-hand side,, \emph{J. Reine Angew. Math.}, 520 (2000), 1. doi: 10.1515/crll.2000.022.

[33]

F. Duzaar and G. Mingione, Local Lipschitz regularity for degenerate elliptic systems,, \emph{Ann. Inst. Henri Poincar\'e}, 27 (2010), 1361. doi: 10.1016/j.anihpc.2010.07.002.

[34]

F. Duzaar and G. Mingione, Gradient continuity estimates,, \emph{Calc. Var. Part. Diff. Equat.}, 39 (2010), 379. doi: 10.1007/s00526-010-0314-6.

[35]

S. Gallot, Inégalités isopérimétriques et analitiques sur les variétés riemanniennes,, \emph{Asterisque}, 163 (1988), 31.

[36]

M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,, Annals of Mathematical Studies, (1983).

[37]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2$^{nd}$ edition, (1983). doi: 10.1007/978-3-642-61798-0.

[38]

E. Giusti, Direct Methods in the Calculus of Variations,, World Scientific, (2003). doi: 10.1142/9789812795557.

[39]

E. Giusti and M. Miranda, Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni,, \emph{Boll. Un. Mat. Ital.}, 1 (1968), 219.

[40]

P. Haiłasz and P. Koskela, Isoperimetric inequalites and imbedding theorems in irregular domains,, \emph{J. London Math. Soc.}, 58 (1998), 425. doi: 10.1112/S0024610798006346.

[41]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE,, Lecture Notes in Math., 1150 (1150).

[42]

S. Kesavan, Symmetrization & Applications,, Series in Analysis 3, (2006). doi: 10.1142/9789812773937.

[43]

T. Kilpeläinen and J. Malý, Sobolev inequalities on sets with irregular boundaries,, \emph{Z. Anal. Anwendungen}, 19 (2000), 369. doi: 10.4171/ZAA/956.

[44]

V. A. Kozlov, V. G. Maz'ya and J. Rossman, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations,, Math. Surveys Monographs 52, (1997).

[45]

I. N. Krol' and V. G. Maz'ya, On the absence of continuity and Hölder continuity of solutions of quasilinear elliptic equations near a nonregular boundary,, \emph{Trudy Moskov. Mat. Os\vs\vc.}, 26 (1972), 73.

[46]

T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory,, \emph{Arch. Ration. Mech. Anal.}, 207 (2013), 215. doi: 10.1007/s00205-012-0562-z.

[47]

T. Kuusi and G. Mingione, A nonlinear Stein theorem,, \emph{Calc. Var. Part. Diff. Equat.}, ().

[48]

D. A. Labutin, Embedding of Sobolev spaces on Hölder domains,, \emph{Proc. Steklov Inst. Math.}, 227 (1999), 163.

[49]

O. A. Ladyzenskaya and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).

[50]

G. M. Lieberman, The Dirichlet problem for quasilinear elliptic equations with continuously differentiable data,, \emph{Comm. Part. Diff. Eq.}, 11 (1986), 167. doi: 10.1080/03605308608820422.

[51]

G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions,, \emph{Ann. Mat. Pura Appl.}, 148 (1987), 77. doi: 10.1007/BF01774284.

[52]

G. M. Lieberman, The natural generalization of the natural conditions of Ladyzenskaya and Ural'ceva for elliptic equations,, \emph{Comm. Part. Diff. Eq.}, 16 (1991), 311. doi: 10.1080/03605309108820761.

[53]

G. M. Lieberman, The conormal derivative problem for equations of variational type in nonsmooth domains,, \emph{Trans. Amer. Math. Soc.}, 330 (1992), 41. doi: 10.2307/2154153.

[54]

P.-L. Lions and F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires,, manuscript., ().

[55]

P.-L. Lions and F. Pacella, Isoperimetric inequalities for convex cones,, \emph{Proc. Amer. Math. Soc.}, 109 (1990), 477. doi: 10.2307/2048011.

[56]

C. Maderna and S. Salsa, A priori bounds in non-linear Neumann problems,, \emph{Boll. Un. Mat. Ital.}, 16 (1979), 1144.

[57]

J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations,, American Mathematical Society, (1997). doi: 10.1090/surv/051.

[58]

V. G. Maz'ya, Classes of regions and imbedding theorems for function spaces,, \emph{Dokl. Akad. Nauk. SSSR}, 133 (1960), 527.

[59]

V. G. Maz'ya, p-conductivity and theorems on embedding certain functional spaces into a C-space,, \emph{Dokl. Akad. Nauk. SSSR}, 140 (1961), 299.

[60]

V. G. Maz'ya, Some estimates of solutions of second-order elliptic equations,, \emph{Dokl. Akad. Nauk. SSSR}, 137 (1961), 1057.

[61]

V. G. Maz'ya, On weak solutions of the Dirichlet and Neumann problems,, \emph{Trusdy Moskov. Mat. Ob\v s\v c.}, 20 (1969), 137.

[62]

V. G. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, Springer, (2011). doi: 10.1007/978-3-642-15564-2.

[63]

V. G. Maz'ya and S. V. Poborchi, Differentiable Functions on Bad Domains,, World Scientific, (1997).

[64]

N. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations,, \emph{Ann. Scuola Norm. Sup. Pisa}, 17 (1963), 189.

[65]

G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations,, \emph{Appl. Math.}, 51 (2006), 355. doi: 10.1007/s10778-006-0110-3.

[66]

G. Mingione, Gradient estimates below the duality exponent,, \emph{Math. Ann.}, 346 (2010), 571. doi: 10.1007/s00208-009-0411-z.

[67]

C. B. Morrey, Multiple Integrals in the Calculus of Variations,, Springer-Verlag, (1966).

[68]

F. Murat, Soluciones renormalizadas de EDP elipticas no lineales,, Preprint 93023 (Spanish), (1993).

[69]

F. Murat, Équations elliptiques non linéaires avec second membre $L^1$ ou mesure,, in \emph{Actes du 26\`eme Congr\'es National d'Analyse Num\'erique, (1994).

[70]

J. Nečas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity,, in \emph{Theor. Nonlin. Oper., (1975), 197.

[71]

R. O'Neil, Convolution operators in $L(p,q)$ spaces,, \emph{Duke Math. J.}, 30 (1963), 129.

[72]

B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces,, \emph{Math. Ineq. Appl.}, 2 (1999), 391. doi: 10.7153/mia-02-35.

[73]

J. Serrin, Pathological solutions of elliptic partial differential equations,, \emph{Ann. Scuola Norm. Sup. Pisa}, 18 (1964), 385.

[74]

V. Sverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex variational integrals,, \emph{Proc. Natl. Acad. Sci. USA}, 99 (2002), 15269. doi: 10.1073/pnas.222494699.

[75]

G. Talenti, Elliptic equations and rearrangements,, \emph{Ann. Sc. Norm. Sup. Pisa}, 3 (1976), 697.

[76]

G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces,, \emph{Ann. Mat. Pura Appl.}, 120 (1979), 159. doi: 10.1007/BF02411942.

[77]

G. Trombetti, Symmetrization methods for partial differential equations,, \emph{Boll. Un. Mat. Ital.}, 3-B (2000), 601.

[1]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[2]

Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43

[3]

Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347

[4]

Santiago Cano-Casanova. Coercivity of elliptic mixed boundary value problems in annulus of $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3819-3839. doi: 10.3934/dcds.2012.32.3819

[5]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

[6]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[7]

Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399

[8]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[9]

Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747

[10]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[11]

Colin J. Cotter, Darryl D. Holm. Geodesic boundary value problems with symmetry. Journal of Geometric Mechanics, 2010, 2 (1) : 51-68. doi: 10.3934/jgm.2010.2.51

[12]

Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897

[13]

Feng Zhou, Zhenqiu Zhang. Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3137-3160. doi: 10.3934/cpaa.2019141

[14]

Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591

[15]

Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010

[16]

Eun Heui Kim. Boundary gradient estimates for subsonic solutions of compressible transonic potential flows. Conference Publications, 2007, 2007 (Special) : 573-579. doi: 10.3934/proc.2007.2007.573

[17]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[18]

René Henrion. Gradient estimates for Gaussian distribution functions: application to probabilistically constrained optimization problems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 655-668. doi: 10.3934/naco.2012.2.655

[19]

Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403

[20]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]