2015, 14(2): 527-548. doi: 10.3934/cpaa.2015.14.527

An integral equation involving Bessel potentials on half space

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin 150080, China

2. 

Science Research Center, Harbin Institute of Technology, Harbin, 150080

Received  February 2014 Revised  September 2014 Published  December 2014

In this article we consider the following integral equation involving Bessel potentials on a half space $\mathbb{R}^n_+ $: \begin{eqnarray} u(x)=\int_{ \mathbb{R}^n_+ }\{g_\alpha(x-y)-g_\alpha(\bar x-y)\} u^\beta(y) dy,\;\;x\in \mathbb{R}^n_+, \end{eqnarray} where $\alpha>0$, $\beta>1$, $\bar x$ is the reflection of $x$ about $x_n=0$, and $g_\alpha(x)$ denotes the Bessel kernel. We first enhance the regularity of positive solutions for the integral equation by regularity-lifting-method, which has been extensively used by many authors. Then, employing the method of moving planes in integral forms, we demonstrate that there is no positive solution for the integral equation.
Citation: Yonggang Zhao, Mingxin Wang. An integral equation involving Bessel potentials on half space. Communications on Pure & Applied Analysis, 2015, 14 (2) : 527-548. doi: 10.3934/cpaa.2015.14.527
References:
[1]

N. Aronszajn and K. T. Smith, Theory of Bessel potentials I,, \emph{Ann. Inst. Fourier}, 11 (1961), 385.

[2]

G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations in $R^N$ or $\mathbbR^n_+$ through the method of moving planes,, \emph{Comm. partial differential Equations}, 22 (1997), 1671. doi: 10.1080/03605309708821315.

[3]

C. Coffman, Uniqueness of the ground state solution for $\Delta u-u+u^3=0$ and a variational characterization of other solutions,, \emph{Arch. Rational Mech. Anal.}, 46 (1972), 81.

[4]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 3937. doi: 10.3934/dcds.2013.33.3937.

[5]

L. Cao and Z, Dai, A Liouville-type theorem for an integral equation on a half-space $\mathbbR^n_+$,, \emph{J. Math. Anal. Appl.}, 389 (2012), 1365. doi: 10.1016/j.jmaa.2012.01.015.

[6]

W. Chen, Y. Fang and C. Li, Super poly-harmonic property of solutions for Navier boundary problems in $\mathbbR^n_+$,, \emph{J. Funct. Anal.}, 256 (2013), 1522. doi: 10.1016/j.jfa.2013.06.010.

[7]

W. Chen, Y. Fang and R. Yang, Semilinear equations involving the fractional Laplacian on domains,, arXiv:1309.7499v1 [math.AP]., ().

[8]

W. Chen, C. Jin, C. Li and C. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations,, \emph{Disc. Cont. Dyn. Sys.}, (2005), 164.

[9]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series on Diff. Equa. $&$ Dyn. Sys., 4 (2010).

[10]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, \emph{Comm. Pure Appl. Anal.}, 4 (2005), 1.

[11]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, \emph{Disc. Cont. Dyn. Sys.}, 4 (2009), 1167. doi: 10.3934/dcds.2009.24.1167.

[12]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, \emph{Disc. Cont. Dyn. Sys.}, 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083.

[13]

W. Chen and C. Li, A sup + inf inequality near $R = 0$,, \emph{Advances in Math}, 220 (2009), 219. doi: 10.1016/j.aim.2008.09.005.

[14]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330. doi: 10.1002/cpa.20116.

[15]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, \emph{Disc. Cont. Dyn. Sys.}, 12 (2005), 347.

[16]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems,, \emph{J. Math. Anal. Appl.}, 377 (2011), 744. doi: 10.1016/j.jmaa.2010.11.035.

[17]

L. Damascelli and F. Gladiali, Some nonexistence results for positive soluions of elliptic equantions in unbounded domain,, \emph{Rev. Mat. Iberoam.}, 20 (2004), 67.

[18]

W. F. Donoghue, Distributions and Fourier Transforms,, Vol. 32, (1969).

[19]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, \emph{Adv. Math.}, 229 (2012), 2835. doi: 10.1016/j.aim.2012.01.018.

[20]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, \emph{Comm. Partial Differential Equations}, 34 (1981), 525. doi: 10.1080/03605308108820196.

[21]

L. Grafakos, Classical and Modern Fourier Analysis,, Pearson Education, (2004).

[22]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with bessel potential,, \emph{Comm. Pure Appl. Anal.}, 10 (2011), 1111. doi: 10.3934/cpaa.2011.10.1111.

[23]

M. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$,, \emph{Arch. Rational Mech. Anal.}, 105 (1989), 243. doi: 10.1007/BF00251502.

[24]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, \emph{Nonlinear Anal.}, 71 (2009), 4231. doi: 10.1016/j.na.2009.01.014.

[25]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, \emph{Comm. Pure Appl. Anal.}, 6 (2007), 453. doi: 10.3934/cpaa.2007.6.453.

[26]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, \emph{Comm. Pure Appl. Anal.}, 6 (2009), 1925. doi: 10.3934/cpaa.2009.8.1925.

[27]

Y. Li and M. Zhu, Uniqueness theorems through the mothod of moving spheres,, \emph{Duke Math. J.}, 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8.

[28]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, \emph{J. Math. Anal. Appl.}, 342 (2008), 943. doi: 10.1016/j.jmaa.2007.12.064.

[29]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, \emph{Commun. Pure Appl. Anal.}, 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855.

[30]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type system,, \emph{Math. Comput. Modelling}, 49 (2009), 379. doi: 10.1016/j.mcm.2008.06.010.

[31]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, \emph{Adv. Math.}, 226 (2011), 2676. doi: 10.1016/j.aim.2010.07.020.

[32]

L. Ma and B. Liu, Symmetry results for decay solutions of elliptic systems in the whole space,, \emph{Adv. Math.}, 225 (2010), 3052. doi: 10.1016/j.aim.2010.05.022.

[33]

K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $R^n$,, \emph{Arch. Rational Mech. Anal.}, 99 (1987), 115. doi: 10.1007/BF00275874.

[34]

W. Reichel and T. Weth, A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems,, \emph{Math. Z.}, 261 (2009), 805. doi: 10.1007/s00209-008-0352-3.

[35]

E. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).

[36]

Y. Zhao, Regularity and symmetry for solutions to a system of weighted integral equations,, \emph{J. Math. Anal. Appl.}, 391 (2012), 209. doi: 10.1016/j.jmaa.2012.02.016.

[37]

R. Zhuo, F. Li and B. Lv, Liouville type theorems for Schrödinger system with Navier boundary conditions in a half space,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 977. doi: 10.3934/cpaa.2014.13.977.

[38]

W. Ziemer, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation,, in: Graduate Texts in Mathematics, (1989). doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

N. Aronszajn and K. T. Smith, Theory of Bessel potentials I,, \emph{Ann. Inst. Fourier}, 11 (1961), 385.

[2]

G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations in $R^N$ or $\mathbbR^n_+$ through the method of moving planes,, \emph{Comm. partial differential Equations}, 22 (1997), 1671. doi: 10.1080/03605309708821315.

[3]

C. Coffman, Uniqueness of the ground state solution for $\Delta u-u+u^3=0$ and a variational characterization of other solutions,, \emph{Arch. Rational Mech. Anal.}, 46 (1972), 81.

[4]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013), 3937. doi: 10.3934/dcds.2013.33.3937.

[5]

L. Cao and Z, Dai, A Liouville-type theorem for an integral equation on a half-space $\mathbbR^n_+$,, \emph{J. Math. Anal. Appl.}, 389 (2012), 1365. doi: 10.1016/j.jmaa.2012.01.015.

[6]

W. Chen, Y. Fang and C. Li, Super poly-harmonic property of solutions for Navier boundary problems in $\mathbbR^n_+$,, \emph{J. Funct. Anal.}, 256 (2013), 1522. doi: 10.1016/j.jfa.2013.06.010.

[7]

W. Chen, Y. Fang and R. Yang, Semilinear equations involving the fractional Laplacian on domains,, arXiv:1309.7499v1 [math.AP]., ().

[8]

W. Chen, C. Jin, C. Li and C. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations,, \emph{Disc. Cont. Dyn. Sys.}, (2005), 164.

[9]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series on Diff. Equa. $&$ Dyn. Sys., 4 (2010).

[10]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, \emph{Comm. Pure Appl. Anal.}, 4 (2005), 1.

[11]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, \emph{Disc. Cont. Dyn. Sys.}, 4 (2009), 1167. doi: 10.3934/dcds.2009.24.1167.

[12]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, \emph{Disc. Cont. Dyn. Sys.}, 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083.

[13]

W. Chen and C. Li, A sup + inf inequality near $R = 0$,, \emph{Advances in Math}, 220 (2009), 219. doi: 10.1016/j.aim.2008.09.005.

[14]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330. doi: 10.1002/cpa.20116.

[15]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, \emph{Disc. Cont. Dyn. Sys.}, 12 (2005), 347.

[16]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems,, \emph{J. Math. Anal. Appl.}, 377 (2011), 744. doi: 10.1016/j.jmaa.2010.11.035.

[17]

L. Damascelli and F. Gladiali, Some nonexistence results for positive soluions of elliptic equantions in unbounded domain,, \emph{Rev. Mat. Iberoam.}, 20 (2004), 67.

[18]

W. F. Donoghue, Distributions and Fourier Transforms,, Vol. 32, (1969).

[19]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, \emph{Adv. Math.}, 229 (2012), 2835. doi: 10.1016/j.aim.2012.01.018.

[20]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, \emph{Comm. Partial Differential Equations}, 34 (1981), 525. doi: 10.1080/03605308108820196.

[21]

L. Grafakos, Classical and Modern Fourier Analysis,, Pearson Education, (2004).

[22]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with bessel potential,, \emph{Comm. Pure Appl. Anal.}, 10 (2011), 1111. doi: 10.3934/cpaa.2011.10.1111.

[23]

M. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$,, \emph{Arch. Rational Mech. Anal.}, 105 (1989), 243. doi: 10.1007/BF00251502.

[24]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, \emph{Nonlinear Anal.}, 71 (2009), 4231. doi: 10.1016/j.na.2009.01.014.

[25]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, \emph{Comm. Pure Appl. Anal.}, 6 (2007), 453. doi: 10.3934/cpaa.2007.6.453.

[26]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, \emph{Comm. Pure Appl. Anal.}, 6 (2009), 1925. doi: 10.3934/cpaa.2009.8.1925.

[27]

Y. Li and M. Zhu, Uniqueness theorems through the mothod of moving spheres,, \emph{Duke Math. J.}, 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8.

[28]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, \emph{J. Math. Anal. Appl.}, 342 (2008), 943. doi: 10.1016/j.jmaa.2007.12.064.

[29]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, \emph{Commun. Pure Appl. Anal.}, 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855.

[30]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type system,, \emph{Math. Comput. Modelling}, 49 (2009), 379. doi: 10.1016/j.mcm.2008.06.010.

[31]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, \emph{Adv. Math.}, 226 (2011), 2676. doi: 10.1016/j.aim.2010.07.020.

[32]

L. Ma and B. Liu, Symmetry results for decay solutions of elliptic systems in the whole space,, \emph{Adv. Math.}, 225 (2010), 3052. doi: 10.1016/j.aim.2010.05.022.

[33]

K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $R^n$,, \emph{Arch. Rational Mech. Anal.}, 99 (1987), 115. doi: 10.1007/BF00275874.

[34]

W. Reichel and T. Weth, A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems,, \emph{Math. Z.}, 261 (2009), 805. doi: 10.1007/s00209-008-0352-3.

[35]

E. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).

[36]

Y. Zhao, Regularity and symmetry for solutions to a system of weighted integral equations,, \emph{J. Math. Anal. Appl.}, 391 (2012), 209. doi: 10.1016/j.jmaa.2012.02.016.

[37]

R. Zhuo, F. Li and B. Lv, Liouville type theorems for Schrödinger system with Navier boundary conditions in a half space,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 977. doi: 10.3934/cpaa.2014.13.977.

[38]

W. Ziemer, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation,, in: Graduate Texts in Mathematics, (1989). doi: 10.1007/978-1-4612-1015-3.

[1]

Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111

[2]

Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663

[3]

Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure & Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893

[4]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[5]

Wu Chen, Zhongxue Lu. Existence and nonexistence of positive solutions to an integral system involving Wolff potential. Communications on Pure & Applied Analysis, 2016, 15 (2) : 385-398. doi: 10.3934/cpaa.2016.15.385

[6]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

[7]

Roman Chapko. On a Hybrid method for shape reconstruction of a buried object in an elastostatic half plane. Inverse Problems & Imaging, 2009, 3 (2) : 199-210. doi: 10.3934/ipi.2009.3.199

[8]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[9]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[10]

Chérif Amrouche, Yves Raudin. Singular boundary conditions and regularity for the biharmonic problem in the half-space. Communications on Pure & Applied Analysis, 2007, 6 (4) : 957-982. doi: 10.3934/cpaa.2007.6.957

[11]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[12]

Yutian Lei. Positive solutions of integral systems involving Bessel potentials. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2721-2737. doi: 10.3934/cpaa.2013.12.2721

[13]

Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure & Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031

[14]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[15]

C. H. Arthur Cheng, John M. Hong, Ying-Chieh Lin, Jiahong Wu, Juan-Ming Yuan. Well-posedness of the two-dimensional generalized Benjamin-Bona-Mahony equation on the upper half plane. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 763-779. doi: 10.3934/dcdsb.2016.21.763

[16]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[17]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[18]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[19]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[20]

Lauri Harhanen, Nuutti Hyvönen. Convex source support in half-plane. Inverse Problems & Imaging, 2010, 4 (3) : 429-448. doi: 10.3934/ipi.2010.4.429

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]