• Previous Article
    Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$
  • CPAA Home
  • This Issue
  • Next Article
    Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions"
March  2015, 14(2): 717-736. doi: 10.3934/cpaa.2015.14.717

Instability of multi-spot patterns in shadow systems of reaction-diffusion equations

1. 

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan

2. 

Department of Mathematical Sciences Based on Modeling and Analysis, Meiji University, Nakano-ku, Tokyo, 164-8525, Japan

3. 

Department of Mathematics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551

Received  July 2013 Revised  December 2013 Published  December 2014

Our aim in this paper is to prove the instability of multi-spot patterns in a shadow system, which is obtained as a limiting system of a reaction-diffusion model as one of the diffusion coefficients goes to infinity. Instead of investigating each eigenfunction for a linearized operator, we characterize the eigenspace spanned by unstable eigenfunctions.
Citation: Shin-Ichiro Ei, Kota Ikeda, Eiji Yanagida. Instability of multi-spot patterns in shadow systems of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 717-736. doi: 10.3934/cpaa.2015.14.717
References:
[1]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, \emph{Arch. Rational Mech. Anal.}, 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[2]

H. Berestycki, P.-L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $R^N$,, \emph{Indiana Univ. Math. J.}, 30 (1981), 141. Google Scholar

[3]

X. Chen and M. Kowalczyk, Slow dynamics of interior spikes in the shadow Gierer-Meinhardt system,, \emph{Adv. Differential Equations}, 6 (2001), 847. doi: 10.1137/S0036141099364954. Google Scholar

[4]

A. Doelman, R. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations,, \emph{Indiana Univ. Math. J.}, 50 (2001), 443. Google Scholar

[5]

S.-I. Ei, K. Ikeda and Y. Miyamoto, Dynamics of a boundary spike for the shadow Gierer-Meinhardt system,, \emph{Commun. Pure Appl. Anal.}, 11 (2012), 115. Google Scholar

[6]

L. C. Evans, Partial Differential Equations,, vol.19 of Graduate Studies in Mathematics, (1998). Google Scholar

[7]

C. Gui, Multipeak solutions for a semilinear Neumann problem,, \emph{Duke Math. J.}, 84 (1996), 739. doi: 10.1215/S0012-7094-96-08423-9. Google Scholar

[8]

K. Ikeda, The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system,, \emph{Netw. Heterog. Media}, 8 (2013), 291. doi: 10.3934/nhm.2013.8.291. Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators,, Classics in Mathematics, (1995). Google Scholar

[10]

K. Kurata and K. Morimoto, Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation,, \emph{Commun. Pure Appl. Anal.}, 7 (2008), 1443. doi: 10.3934/cpaa.2008.7.1443. Google Scholar

[11]

C. S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem,, in \emph{Calculus of variations and partial differential equations (Trento, (1988), 160. doi: 10.1007/BFb0082894. Google Scholar

[12]

Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball,, \emph{J. Differential Equations}, 229 (2006), 494. doi: 10.1016/j.jde.2006.03.015. Google Scholar

[13]

W.-M. Ni, P. PolJáčik and E. Yanagida, Monotonicity of stable solutions in shadow systems,, \emph{Trans. Amer. Math. Soc.}, 353 (2001), 5057. Google Scholar

[14]

W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem,, \emph{Duke Math. J.}, 70 (1993), 247. doi: 10.1215/S0012-7094-93-07004-4. Google Scholar

[15]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems,, \emph{SIAM J. Math. Anal.}, 13 (1982), 555. doi: 10.1137/0513037. Google Scholar

[16]

I. Takagi, Point-condensation for a reaction-diffusion system,, \emph{J. Differential Equations}, 61 (1986), 208. doi: 10.1016/0022-0396(86)90119-1. Google Scholar

[17]

T. Wakasa and S. Yotsutani, Representation formulas for some 1-dimensional linearized eigenvalue problems,, \emph{Commun. Pure Appl. Anal.}, 7 (2008), 745. doi: 10.3934/cpaa.2008.7.745. Google Scholar

[18]

J. Wei, Existence, stability and metastability of point condensation patterns generated by the Gray-Scott system,, \emph{Nonlinearity}, 12 (1999), 593. doi: 10.1088/0951-7715/12/3/011. Google Scholar

[19]

J. Wei and M. Winter, Existence and stability of multiple-spot solutions for the Gray-Scott model in $R^2$,, \emph{Phys. D}, 176 (2003), 147. doi: 10.1016/S0167-2789(02)00743-1. Google Scholar

[20]

J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system,, \emph{J. Math. Pures Appl.}, 83 (2004), 433. doi: 10.1016/j.matpur.2003.09.006. Google Scholar

[21]

J. Wei and M. Winter, Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in $R^1$,, \emph{Methods Appl. Anal.}, 14 (2007), 119. doi: 10.4310/MAA.2007.v14.n2.a2. Google Scholar

show all references

References:
[1]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, \emph{Arch. Rational Mech. Anal.}, 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[2]

H. Berestycki, P.-L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $R^N$,, \emph{Indiana Univ. Math. J.}, 30 (1981), 141. Google Scholar

[3]

X. Chen and M. Kowalczyk, Slow dynamics of interior spikes in the shadow Gierer-Meinhardt system,, \emph{Adv. Differential Equations}, 6 (2001), 847. doi: 10.1137/S0036141099364954. Google Scholar

[4]

A. Doelman, R. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations,, \emph{Indiana Univ. Math. J.}, 50 (2001), 443. Google Scholar

[5]

S.-I. Ei, K. Ikeda and Y. Miyamoto, Dynamics of a boundary spike for the shadow Gierer-Meinhardt system,, \emph{Commun. Pure Appl. Anal.}, 11 (2012), 115. Google Scholar

[6]

L. C. Evans, Partial Differential Equations,, vol.19 of Graduate Studies in Mathematics, (1998). Google Scholar

[7]

C. Gui, Multipeak solutions for a semilinear Neumann problem,, \emph{Duke Math. J.}, 84 (1996), 739. doi: 10.1215/S0012-7094-96-08423-9. Google Scholar

[8]

K. Ikeda, The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system,, \emph{Netw. Heterog. Media}, 8 (2013), 291. doi: 10.3934/nhm.2013.8.291. Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators,, Classics in Mathematics, (1995). Google Scholar

[10]

K. Kurata and K. Morimoto, Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation,, \emph{Commun. Pure Appl. Anal.}, 7 (2008), 1443. doi: 10.3934/cpaa.2008.7.1443. Google Scholar

[11]

C. S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem,, in \emph{Calculus of variations and partial differential equations (Trento, (1988), 160. doi: 10.1007/BFb0082894. Google Scholar

[12]

Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball,, \emph{J. Differential Equations}, 229 (2006), 494. doi: 10.1016/j.jde.2006.03.015. Google Scholar

[13]

W.-M. Ni, P. PolJáčik and E. Yanagida, Monotonicity of stable solutions in shadow systems,, \emph{Trans. Amer. Math. Soc.}, 353 (2001), 5057. Google Scholar

[14]

W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem,, \emph{Duke Math. J.}, 70 (1993), 247. doi: 10.1215/S0012-7094-93-07004-4. Google Scholar

[15]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems,, \emph{SIAM J. Math. Anal.}, 13 (1982), 555. doi: 10.1137/0513037. Google Scholar

[16]

I. Takagi, Point-condensation for a reaction-diffusion system,, \emph{J. Differential Equations}, 61 (1986), 208. doi: 10.1016/0022-0396(86)90119-1. Google Scholar

[17]

T. Wakasa and S. Yotsutani, Representation formulas for some 1-dimensional linearized eigenvalue problems,, \emph{Commun. Pure Appl. Anal.}, 7 (2008), 745. doi: 10.3934/cpaa.2008.7.745. Google Scholar

[18]

J. Wei, Existence, stability and metastability of point condensation patterns generated by the Gray-Scott system,, \emph{Nonlinearity}, 12 (1999), 593. doi: 10.1088/0951-7715/12/3/011. Google Scholar

[19]

J. Wei and M. Winter, Existence and stability of multiple-spot solutions for the Gray-Scott model in $R^2$,, \emph{Phys. D}, 176 (2003), 147. doi: 10.1016/S0167-2789(02)00743-1. Google Scholar

[20]

J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system,, \emph{J. Math. Pures Appl.}, 83 (2004), 433. doi: 10.1016/j.matpur.2003.09.006. Google Scholar

[21]

J. Wei and M. Winter, Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in $R^1$,, \emph{Methods Appl. Anal.}, 14 (2007), 119. doi: 10.4310/MAA.2007.v14.n2.a2. Google Scholar

[1]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[2]

Yasumasa Nishiura, Takashi Teramoto, Xiaohui Yuan. Heterogeneity-induced spot dynamics for a three-component reaction-diffusion system. Communications on Pure & Applied Analysis, 2012, 11 (1) : 307-338. doi: 10.3934/cpaa.2012.11.307

[3]

Rebecca McKay, Theodore Kolokolnikov. Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 191-220. doi: 10.3934/dcdsb.2012.17.191

[4]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[5]

Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks & Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369

[6]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[7]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[8]

Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041

[9]

Shuangquan Xie, Theodore Kolokolnikov. Oscillations of many interfaces in the near-shadow regime of two-component reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 959-975. doi: 10.3934/dcdsb.2016.21.959

[10]

Nejib Mahmoudi. Single-point blow-up for a multi-component reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 209-230. doi: 10.3934/dcds.2018010

[11]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[12]

Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516

[13]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[14]

Ming Mei, Yau Shu Wong. Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 743-752. doi: 10.3934/mbe.2009.6.743

[15]

Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020089

[16]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[17]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

[18]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[19]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[20]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]