May  2015, 14(3): 981-1000. doi: 10.3934/cpaa.2015.14.981

Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model

1. 

School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, China

2. 

School of Mathematics and Center for Nonlinear Studies, Northwest University, Xi'an 710127

3. 

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275

Received  September 2014 Revised  January 2015 Published  March 2015

In this paper, we consider global existence and optimal time decay rates of global smooth solutions to three-dimensional reduced gravity two and a half layer model. Indeed we show that the upper and middle layer thicknesses and horizontal velocities converge to their equilibrium state at the $L^2$-rate $(1+t)^{-\frac{3}{4}}$ or $L^\infty$-rate $(1+t)^{-\frac{3}{2}}$, respectively. These convergence rates are also shown to be optimal. The proof is based on the detailed analysis of the Green's function to the linearized system and elaborate energy estimates to the nonlinear system.
Citation: Haibo Cui, Lei Yao, Zheng-An Yao. Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 981-1000. doi: 10.3934/cpaa.2015.14.981
References:
[1]

R. Duan and C. H. Zhou, On the compactness of the reduced-gravity two-and-a-half layer equations,, \emph{J. Differential Equations}, 252 (2012), 3506. doi: 10.1016/j.jde.2011.12.012.

[2]

R. J. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system,, \emph{Anal. Appl.}, 10 (2012), 133. doi: 10.1142/S0219530512500078.

[3]

R. J. Duan, Global smooth flows for the compressible Euler-Maxwell system The relaxation case,, \emph{J. Hyperbolic Differential Equations}, 8 (2011), 375. doi: 10.1142/S0219891611002421.

[4]

R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity,, \emph{Indiana Univ. Math. J.}, 57 (2008), 2299. doi: 10.1512/iumj.2008.57.3326.

[5]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, \emph{Comm. Partial Differential Equations}, 37 (2012), 2165. doi: 10.1080/03605302.2012.696296.

[6]

Z. H. Guo, Z. L. Li and L. Yao, Existence of global weak solution for a reduced gravity two and half layer model,, \emph{J. Math. Phys.}, 54 (2013), 1. doi: 10.1063/1.4836775.

[7]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow,, \emph{Indiana Univ. Math. J.}, 44 (1995), 603. doi: 10.1512/iumj.1995.44.2003.

[8]

D. L. Li, The Greens function of the Navier-Stokes equations for gas dynamics in $R^3$,, \emph{Comm. Math. Phys.}, 257 (2005), 579. doi: 10.1007/s00220-005-1351-4.

[9]

H. L. Li, A. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $R^3$,, \emph{Arch. Ration. Mech. Anal.}, 196 (2010), 681. doi: 10.1007/s00205-009-0255-4.

[10]

H. L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $R^3$,, \emph{Math. Meth. Appl. Sci.}, 34 (2011), 670. doi: 10.1002/mma.1391.

[11]

H. L. Li and T. Zhang, Large time behavior of solutions to 3D compressible Navier-Stokes-Poisson system,, \emph{Sci. China Math.}, 55 (2012), 159. doi: 10.1007/s11425-011-4280-z.

[12]

T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions,, \emph{Comm. Math. Phys.}, 196 (1998), 145. doi: 10.1007/s002200050418.

[13]

A. Matsumura and T. Nishida, The initial value problem for the equation of motion of viscous and heat-conductive gases,, \emph{J. Math. Kyoto Univ.}, 20 (1980), 67.

[14]

W. K. Wang and X. F. Yang, The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimensions,, \emph{J. Hyperbolic Differential Equations}, 2 (2005), 673. doi: 10.1142/S0219891605000580.

[15]

G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation,, Cambridge University Press, (2006).

[16]

J. D. Zabsonre and G. Narbona-Reina, Existence of a global weak solution for a 2D viscous bi-layer Shallow Water model,, \emph{Nonlinear Anal. Real World Appl.}, 10 (2009), 2971. doi: 10.1016/j.nonrwa.2008.09.004.

[17]

G. J. Zhang, H. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $R^3$,, \emph{J. Differential Equations}, 250 (2011), 866. doi: 10.1016/j.jde.2010.07.035.

show all references

References:
[1]

R. Duan and C. H. Zhou, On the compactness of the reduced-gravity two-and-a-half layer equations,, \emph{J. Differential Equations}, 252 (2012), 3506. doi: 10.1016/j.jde.2011.12.012.

[2]

R. J. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system,, \emph{Anal. Appl.}, 10 (2012), 133. doi: 10.1142/S0219530512500078.

[3]

R. J. Duan, Global smooth flows for the compressible Euler-Maxwell system The relaxation case,, \emph{J. Hyperbolic Differential Equations}, 8 (2011), 375. doi: 10.1142/S0219891611002421.

[4]

R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity,, \emph{Indiana Univ. Math. J.}, 57 (2008), 2299. doi: 10.1512/iumj.2008.57.3326.

[5]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, \emph{Comm. Partial Differential Equations}, 37 (2012), 2165. doi: 10.1080/03605302.2012.696296.

[6]

Z. H. Guo, Z. L. Li and L. Yao, Existence of global weak solution for a reduced gravity two and half layer model,, \emph{J. Math. Phys.}, 54 (2013), 1. doi: 10.1063/1.4836775.

[7]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow,, \emph{Indiana Univ. Math. J.}, 44 (1995), 603. doi: 10.1512/iumj.1995.44.2003.

[8]

D. L. Li, The Greens function of the Navier-Stokes equations for gas dynamics in $R^3$,, \emph{Comm. Math. Phys.}, 257 (2005), 579. doi: 10.1007/s00220-005-1351-4.

[9]

H. L. Li, A. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $R^3$,, \emph{Arch. Ration. Mech. Anal.}, 196 (2010), 681. doi: 10.1007/s00205-009-0255-4.

[10]

H. L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $R^3$,, \emph{Math. Meth. Appl. Sci.}, 34 (2011), 670. doi: 10.1002/mma.1391.

[11]

H. L. Li and T. Zhang, Large time behavior of solutions to 3D compressible Navier-Stokes-Poisson system,, \emph{Sci. China Math.}, 55 (2012), 159. doi: 10.1007/s11425-011-4280-z.

[12]

T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions,, \emph{Comm. Math. Phys.}, 196 (1998), 145. doi: 10.1007/s002200050418.

[13]

A. Matsumura and T. Nishida, The initial value problem for the equation of motion of viscous and heat-conductive gases,, \emph{J. Math. Kyoto Univ.}, 20 (1980), 67.

[14]

W. K. Wang and X. F. Yang, The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimensions,, \emph{J. Hyperbolic Differential Equations}, 2 (2005), 673. doi: 10.1142/S0219891605000580.

[15]

G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation,, Cambridge University Press, (2006).

[16]

J. D. Zabsonre and G. Narbona-Reina, Existence of a global weak solution for a 2D viscous bi-layer Shallow Water model,, \emph{Nonlinear Anal. Real World Appl.}, 10 (2009), 2971. doi: 10.1016/j.nonrwa.2008.09.004.

[17]

G. J. Zhang, H. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $R^3$,, \emph{J. Differential Equations}, 250 (2011), 866. doi: 10.1016/j.jde.2010.07.035.

[1]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[2]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[3]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[4]

Zhigang Wu, Weike Wang. Generalized Huygens' principle for a reduced gravity two and a half layer model in dimension three. Kinetic & Related Models, 2017, 10 (4) : 1205-1233. doi: 10.3934/krm.2017046

[5]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[6]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[7]

Jishan Fan, Tohru Ozawa. Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model. Conference Publications, 2011, 2011 (Special) : 400-409. doi: 10.3934/proc.2011.2011.400

[8]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[9]

Linglong Du. Characteristic half space problem for the Broadwell model. Networks & Heterogeneous Media, 2014, 9 (1) : 97-110. doi: 10.3934/nhm.2014.9.97

[10]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[11]

Jan Giesselmann, Niklas Kolbe, Mária Lukáčová-Medvi${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over d} }}$ová, Nikolaos Sfakianakis. Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4397-4431. doi: 10.3934/dcdsb.2018169

[12]

Wenning Wei. On the Cauchy-Dirichlet problem in a half space for backward SPDEs in weighted Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5353-5378. doi: 10.3934/dcds.2015.35.5353

[13]

Yong Chen, Hongjun Gao, Yue Liu. On the Cauchy problem for the two-component Dullin-Gottwald-Holm system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3407-3441. doi: 10.3934/dcds.2013.33.3407

[14]

Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592

[15]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

[16]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[17]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[18]

Rafael Granero-Belinchón, Martina Magliocca. Global existence and decay to equilibrium for some crystal surface models. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2101-2131. doi: 10.3934/dcds.2019088

[19]

Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks & Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167

[20]

Hung-Wen Kuo. The initial layer for Rayleigh problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 137-170. doi: 10.3934/dcdsb.2011.15.137

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]