2016, 15(4): 1285-1308. doi: 10.3934/cpaa.2016.15.1285

The Nehari manifold for fractional systems involving critical nonlinearities

1. 

College of Science, Minzu University of China, Beijing 100081, China

2. 

Dipartimento di Informatica, Università degli Studi di Verona, Cá Vignal 2, Strada Le Grazie 15, I-37134 Veron

3. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received  September 2015 Revised  January 2016 Published  April 2016

We study the combined effect of concave and convex nonlinearities on the number of positive solutions for a fractional system involving critical Sobolev exponents. With the help of the Nehari manifold, we prove that the system admits at least two positive solutions when the pair of parameters $(\lambda,\mu)$ belongs to a suitable subset of $R^2$.
Citation: Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285
References:
[1]

C.O. Alves, D.C. de Morais Filho and M.A.S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents,, \emph{Nonlinear Anal.}, 42 (2000), 771. doi: 10.1016/S0362-546X(99)00121-2.

[2]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems,, \emph{J. Funct. Anal.}, 122 (1994), 519. doi: 10.1006/jfan.1994.1078.

[3]

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian,, \emph{J. Differential Equations}, 252 (2012), 6133. doi: 10.1016/j.jde.2012.02.023.

[4]

B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 32 (2015), 875. doi: 10.1016/j.anihpc.2014.04.003.

[5]

C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc. Roy. Soc. Edinburgh Sect. A. Math.}, 142 (2013), 39.

[6]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437. doi: 10.1002/cpa.3160360405.

[7]

K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function,, \emph{J. Differential Equations}, 193 (2003), 481. doi: 10.1016/S0022-0396(03)00121-9.

[8]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025.

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245. doi: 10.1080/03605300600987306.

[10]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations,, \emph{Comm. Partial Differential Equations}, 36 (2011), 1353. doi: 10.1080/03605302.2011.562954.

[11]

W. Chen and S. Deng, The Nehari manifold for a nonlinear elliptic operators involving concave-convex nonlinearities,, \emph{Z. Angew. Math. Phys.}, 66 (2015), 1387. doi: 10.1007/s00033-014-0486-6.

[12]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330. doi: 10.1002/cpa.20116.

[13]

X. Cheng and S. Ma, Existence of three nontrivial solutions for elliptic systems with critcal exponents and weights,, \emph{Nonlinear Anal.}, 69 (2008), 3537. doi: 10.1016/j.na.2007.09.040.

[14]

E. Colorado, A. de Pablo and U. Sánchez, Perturbation of a critical fractional equations,, \emph{Pacific J. Math.}, 271 (2014), 65. doi: 10.2140/pjm.2014.271.65.

[15]

A. Cotsiolis and N. Tavoularis, Best constant for Sobolev inequalities for higher order fractional derivatives,, \emph{J. Math. Anal. Appl.}, 295 (2004), 225. doi: 10.1016/j.jmaa.2004.03.034.

[16]

P. Drabek and S.I. Pohozaev, Positive solutions for the $p$-Laplacian: application of the fibering methods,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 127 (1997), 703. doi: 10.1017/S0308210500023787.

[17]

I. Ekeland, On the variational principle,, \emph{J. Math. Anal. Appl.}, 47 (1974), 324.

[18]

L. Faria, O. Miyagaki, F. Pereira, M. Squassina and C. Zhang, The Brezis-Nirenberg problem for nonlocal systems,, \emph{Adv. Nonlinear Anal.}, 5 (2016), 85. doi: 10.1515/anona-2015-0114.

[19]

P. Han, The effect of the domain topology of the number of positive solutions of elliptic systems involving critical Sobolev exponents,, \emph{Houston J. Math.}, 32 (2006), 1241.

[20]

T. Hsu and H. Lin, Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 139 (2009), 1163. doi: 10.1017/S0308210508000875.

[21]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004.

[22]

X. Shang, J. Zhang and Y. Yang, Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 567. doi: 10.3934/cpaa.2014.13.567.

[23]

R. Servadei and E. Valdinoci, Mountain pass solutions for nonlinear elliptic operators,, \emph{J. Math. Anal. Appl.}, 389 (2012), 887. doi: 10.1016/j.jmaa.2011.12.032.

[24]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, \emph{Trans. Amer. Math. Soc.}, 367 (2015), 67. doi: 10.1090/S0002-9947-2014-05884-4.

[25]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 144 (2014), 831. doi: 10.1017/S0308210512001783.

[26]

J. Serra and X. Ros-Oton, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275. doi: 10.1016/j.matpur.2013.06.003.

[27]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 67. doi: 10.1002/cpa.20153.

[28]

J. Tan, The Brézis-Nirenberg type problem involving the square root of the Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 36 (2011), 21. doi: 10.1007/s00526-010-0378-3.

[29]

Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 52 (2015), 95. doi: 10.1007/s00526-013-0706-5.

[30]

T.F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,, \emph{J. Math. Anal. Appl.}, 318 (2006), 253. doi: 10.1016/j.jmaa.2005.05.057.

[31]

T.F. Wu, The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions,, \emph{Nonlinear Anal.}, 68 (2008), 1733. doi: 10.1016/j.na.2007.01.004.

[32]

X. Yu, The Nehari manifold for elliptic equation involving the square root of the laplacian,, \emph{J. Differential Equations}, 252 (2012), 1283. doi: 10.1016/j.jde.2011.09.015.

show all references

References:
[1]

C.O. Alves, D.C. de Morais Filho and M.A.S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents,, \emph{Nonlinear Anal.}, 42 (2000), 771. doi: 10.1016/S0362-546X(99)00121-2.

[2]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems,, \emph{J. Funct. Anal.}, 122 (1994), 519. doi: 10.1006/jfan.1994.1078.

[3]

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian,, \emph{J. Differential Equations}, 252 (2012), 6133. doi: 10.1016/j.jde.2012.02.023.

[4]

B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 32 (2015), 875. doi: 10.1016/j.anihpc.2014.04.003.

[5]

C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc. Roy. Soc. Edinburgh Sect. A. Math.}, 142 (2013), 39.

[6]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437. doi: 10.1002/cpa.3160360405.

[7]

K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function,, \emph{J. Differential Equations}, 193 (2003), 481. doi: 10.1016/S0022-0396(03)00121-9.

[8]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025.

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245. doi: 10.1080/03605300600987306.

[10]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations,, \emph{Comm. Partial Differential Equations}, 36 (2011), 1353. doi: 10.1080/03605302.2011.562954.

[11]

W. Chen and S. Deng, The Nehari manifold for a nonlinear elliptic operators involving concave-convex nonlinearities,, \emph{Z. Angew. Math. Phys.}, 66 (2015), 1387. doi: 10.1007/s00033-014-0486-6.

[12]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330. doi: 10.1002/cpa.20116.

[13]

X. Cheng and S. Ma, Existence of three nontrivial solutions for elliptic systems with critcal exponents and weights,, \emph{Nonlinear Anal.}, 69 (2008), 3537. doi: 10.1016/j.na.2007.09.040.

[14]

E. Colorado, A. de Pablo and U. Sánchez, Perturbation of a critical fractional equations,, \emph{Pacific J. Math.}, 271 (2014), 65. doi: 10.2140/pjm.2014.271.65.

[15]

A. Cotsiolis and N. Tavoularis, Best constant for Sobolev inequalities for higher order fractional derivatives,, \emph{J. Math. Anal. Appl.}, 295 (2004), 225. doi: 10.1016/j.jmaa.2004.03.034.

[16]

P. Drabek and S.I. Pohozaev, Positive solutions for the $p$-Laplacian: application of the fibering methods,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 127 (1997), 703. doi: 10.1017/S0308210500023787.

[17]

I. Ekeland, On the variational principle,, \emph{J. Math. Anal. Appl.}, 47 (1974), 324.

[18]

L. Faria, O. Miyagaki, F. Pereira, M. Squassina and C. Zhang, The Brezis-Nirenberg problem for nonlocal systems,, \emph{Adv. Nonlinear Anal.}, 5 (2016), 85. doi: 10.1515/anona-2015-0114.

[19]

P. Han, The effect of the domain topology of the number of positive solutions of elliptic systems involving critical Sobolev exponents,, \emph{Houston J. Math.}, 32 (2006), 1241.

[20]

T. Hsu and H. Lin, Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 139 (2009), 1163. doi: 10.1017/S0308210508000875.

[21]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004.

[22]

X. Shang, J. Zhang and Y. Yang, Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 567. doi: 10.3934/cpaa.2014.13.567.

[23]

R. Servadei and E. Valdinoci, Mountain pass solutions for nonlinear elliptic operators,, \emph{J. Math. Anal. Appl.}, 389 (2012), 887. doi: 10.1016/j.jmaa.2011.12.032.

[24]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, \emph{Trans. Amer. Math. Soc.}, 367 (2015), 67. doi: 10.1090/S0002-9947-2014-05884-4.

[25]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 144 (2014), 831. doi: 10.1017/S0308210512001783.

[26]

J. Serra and X. Ros-Oton, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275. doi: 10.1016/j.matpur.2013.06.003.

[27]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 67. doi: 10.1002/cpa.20153.

[28]

J. Tan, The Brézis-Nirenberg type problem involving the square root of the Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 36 (2011), 21. doi: 10.1007/s00526-010-0378-3.

[29]

Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 52 (2015), 95. doi: 10.1007/s00526-013-0706-5.

[30]

T.F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,, \emph{J. Math. Anal. Appl.}, 318 (2006), 253. doi: 10.1016/j.jmaa.2005.05.057.

[31]

T.F. Wu, The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions,, \emph{Nonlinear Anal.}, 68 (2008), 1733. doi: 10.1016/j.na.2007.01.004.

[32]

X. Yu, The Nehari manifold for elliptic equation involving the square root of the laplacian,, \emph{J. Differential Equations}, 252 (2012), 1283. doi: 10.1016/j.jde.2011.09.015.

[1]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[2]

Jia-Feng Liao, Yang Pu, Xiao-Feng Ke, Chun-Lei Tang. Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2157-2175. doi: 10.3934/cpaa.2017107

[3]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[4]

Qingfang Wang. Multiple positive solutions of fractional elliptic equations involving concave and convex nonlinearities in $R^N$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1671-1688. doi: 10.3934/cpaa.2016008

[5]

Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concave-convex problem with nonlocal mixed boundary data. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1103-1120. doi: 10.3934/cpaa.2018053

[6]

Junping Shi, Ratnasingham Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 559-571. doi: 10.3934/dcds.2001.7.559

[7]

Salvatore A. Marano, Nikolaos S. Papageorgiou. Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter. Communications on Pure & Applied Analysis, 2013, 12 (2) : 815-829. doi: 10.3934/cpaa.2013.12.815

[8]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[9]

João Marcos do Ó, Uberlandio Severo. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Communications on Pure & Applied Analysis, 2009, 8 (2) : 621-644. doi: 10.3934/cpaa.2009.8.621

[10]

Yaoping Chen, Jianqing Chen. Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1531-1552. doi: 10.3934/cpaa.2017073

[11]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[12]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[13]

Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289

[14]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[15]

J. García-Melián, Julio D. Rossi, José Sabina de Lis. A convex-concave elliptic problem with a parameter on the boundary condition. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1095-1124. doi: 10.3934/dcds.2012.32.1095

[16]

Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013

[17]

Lorenzo Brasco, Eleonora Cinti. On fractional Hardy inequalities in convex sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4019-4040. doi: 10.3934/dcds.2018175

[18]

Armengol Gasull, Jaume Giné, Joan Torregrosa. Center problem for systems with two monomial nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 577-598. doi: 10.3934/cpaa.2016.15.577

[19]

Alexander Krasnosel'skii. Resonant forced oscillations in systems with periodic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 239-254. doi: 10.3934/dcds.2013.33.239

[20]

Pablo Amster, Mónica Clapp. Periodic solutions of resonant systems with rapidly rotating nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 373-383. doi: 10.3934/dcds.2011.31.373

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]