2016, 15(2): 495-506. doi: 10.3934/cpaa.2016.15.495

Reaction-Diffusion equations with spatially variable exponents and large diffusion

1. 

Instituto de Matemática e Computaçã, Universidade Federal de Itajubá, 37500-903 Itajubá MG

2. 

Instituto de Matemática e Computação, Universidade Federal de Itajubá, 37500-903 - Itajubá - Minas Gerais, Brazil

3. 

Departamento de Matemática, Universidade Estadual de Maringá, 87020-900 Maringá, Paraná, Brazil

Received  April 2015 Revised  October 2015 Published  January 2016

In this work we prove continuity of solutions with respect to initial conditions and couple parameters and we prove joint upper semicontinuity of a family of global attractors for the problem \begin{eqnarray} &\frac{\partial u_{s}}{\partial t}(t)-\textrm{div}(D_s|\nabla u_{s}|^{p_s(x)-2}\nabla u_{s})+|u_s|^{p_s(x)-2}u_s=B(u_{s}(t)),\;\; t>0,\\ &u_{s}(0)=u_{0s}, \end{eqnarray} under homogeneous Neumann boundary conditions, $u_{0s}\in H:=L^2(\Omega),$ $\Omega\subset\mathbb{R}^n$ ($n\geq 1$) is a smooth bounded domain, $B:H\rightarrow H$ is a globally Lipschitz map with Lipschitz constant $L\geq 0$, $D_s\in[1,\infty)$, $p_s(\cdot)\in C(\bar{\Omega})$, $p_s^-:=\textrm{ess inf}\;p_s\geq p,$ $p_s^+:=\textrm{ess sup}\;p_s\leq a,$ for all $s\in \mathbb{N},$ when $p_s(\cdot)\rightarrow p$ in $L^\infty(\Omega)$ and $D_s\rightarrow\infty$ as $s\rightarrow\infty,$ with $a,p>2$ positive constants.
Citation: Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495
References:
[1]

H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert,, North-Holland Publishing Company, (1973).

[2]

H. Brézis, Analyse fonctionnelle:Théorie et applications,, Masson, (1983).

[3]

A. N. Carvalho, Infinite dimensional dynamics described by ordinary differential equations,, \emph{J. Differential Equation}, 116 (1995), 338. doi: 10.1006/jdeq.1995.1039.

[4]

A. N. Carvalho and J. K. Hale, Large diffusion with dispersion,, \emph{Nonlinear Anal.}, 17 (1991), 1139. doi: 10.1016/0362-546X(91)90233-Q.

[5]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Math.}, 66 (2006), 1383. doi: 10.1137/050624522.

[6]

F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions,, \emph{Comput. Math. Appl.}, 53 (2007), 595. doi: 10.1016/j.camwa.2006.02.032.

[7]

E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of non-linear reaction-diffusion equations,, \emph{SIAM J. Appl. Math.}, 35 (1978), 1.

[8]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Springer-Verlag, (2011). doi: 10.1007/978-3-642-18363-8.

[9]

X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)-$laplacian Dirichlet problems,, \emph{Nonlinear Anal.}, 52 (2003), 1843. doi: 10.1016/S0362-546X(02)00150-5.

[10]

Z. Guo, Q. Liu, J. Sun and B. Wu, Reaction-diffusion systems with $p(x)-$growth for image denoising,, \emph{Nonlinear Anal. Real World Appl.}, 12 (2011), 2904. doi: 10.1016/j.nonrwa.2011.04.015.

[11]

J. K. Hale, Large diffusivity and asymptotic behavior in parabolic systems,, \emph{J. Math. Anal. Appl.}, 118 (1986), 455. doi: 10.1016/0022-247X(86)90273-8.

[12]

K. Rajagopal and M. Růžička, Mathematical modelling of electrorheological materials,, \emph{Contin. Mech. Thermodyn.}, 13 (2001), 59.

[13]

M. Růžička, Flow of shear dependent electrorheological fluids,, \emph{C. R. Acad. Sci. Paris S\'er. I.}, 329 (1999), 393. doi: 10.1016/S0764-4442(00)88612-7.

[14]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, in Lectures Notes in Mathematics (vol. 1748), (1748). doi: 10.1007/BFb0104029.

[15]

J. Simsen, A global attractor for a $p(x)$-Laplacian inclusion,, \emph{C. R. Acad. Sci. Paris S\'er. I.}, 351 (2013), 87. doi: 10.1016/j.crma.2013.02.009.

[16]

J. Simsen and C. B. Gentile, Well-posed $p$-laplacian problems with large diffusion,, \emph{Nonlinear Anal.}, 71 (2009), 4609. doi: 10.1016/j.na.2009.03.041.

[17]

J. Simsen and M. S. Simsen, PDE and ODE limit problems for $p(x)$-Laplacian parabolic equations,, \emph{J. Math. Anal. Appl.}, 383 (2011), 71. doi: 10.1016/j.jmaa.2011.05.003.

[18]

J. Simsen, M. S. Simsen and M. R. T. Primo, Continuity of the flows and upper semicontinuity of global attractors for $p_s(x)$-Laplacian parabolic problems,, \emph{J. Math. Anal. Appl.}, 398 (2013), 138. doi: 10.1016/j.jmaa.2012.08.047.

[19]

J. Simsen, M. S. Simsen and M. R. T. Primo, On $p_s(x)$-Laplacian parabolic problems with non-globally Lipschitz forcing term,, \emph{Z. Anal. Anwend.}, 33 (2014), 447. doi: 10.4171/ZAA/1522.

[20]

J. Simsen, M. S. Simsen and F. B. Rocha, Existence of solutions for some classes of parabolic problems involving variable exponents,, \emph{Nonlinear Stud.}, 21 (2014), 113.

[21]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8.

show all references

References:
[1]

H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert,, North-Holland Publishing Company, (1973).

[2]

H. Brézis, Analyse fonctionnelle:Théorie et applications,, Masson, (1983).

[3]

A. N. Carvalho, Infinite dimensional dynamics described by ordinary differential equations,, \emph{J. Differential Equation}, 116 (1995), 338. doi: 10.1006/jdeq.1995.1039.

[4]

A. N. Carvalho and J. K. Hale, Large diffusion with dispersion,, \emph{Nonlinear Anal.}, 17 (1991), 1139. doi: 10.1016/0362-546X(91)90233-Q.

[5]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM J. Math.}, 66 (2006), 1383. doi: 10.1137/050624522.

[6]

F. Ettwein and M. Růžička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions,, \emph{Comput. Math. Appl.}, 53 (2007), 595. doi: 10.1016/j.camwa.2006.02.032.

[7]

E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of non-linear reaction-diffusion equations,, \emph{SIAM J. Appl. Math.}, 35 (1978), 1.

[8]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Springer-Verlag, (2011). doi: 10.1007/978-3-642-18363-8.

[9]

X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)-$laplacian Dirichlet problems,, \emph{Nonlinear Anal.}, 52 (2003), 1843. doi: 10.1016/S0362-546X(02)00150-5.

[10]

Z. Guo, Q. Liu, J. Sun and B. Wu, Reaction-diffusion systems with $p(x)-$growth for image denoising,, \emph{Nonlinear Anal. Real World Appl.}, 12 (2011), 2904. doi: 10.1016/j.nonrwa.2011.04.015.

[11]

J. K. Hale, Large diffusivity and asymptotic behavior in parabolic systems,, \emph{J. Math. Anal. Appl.}, 118 (1986), 455. doi: 10.1016/0022-247X(86)90273-8.

[12]

K. Rajagopal and M. Růžička, Mathematical modelling of electrorheological materials,, \emph{Contin. Mech. Thermodyn.}, 13 (2001), 59.

[13]

M. Růžička, Flow of shear dependent electrorheological fluids,, \emph{C. R. Acad. Sci. Paris S\'er. I.}, 329 (1999), 393. doi: 10.1016/S0764-4442(00)88612-7.

[14]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, in Lectures Notes in Mathematics (vol. 1748), (1748). doi: 10.1007/BFb0104029.

[15]

J. Simsen, A global attractor for a $p(x)$-Laplacian inclusion,, \emph{C. R. Acad. Sci. Paris S\'er. I.}, 351 (2013), 87. doi: 10.1016/j.crma.2013.02.009.

[16]

J. Simsen and C. B. Gentile, Well-posed $p$-laplacian problems with large diffusion,, \emph{Nonlinear Anal.}, 71 (2009), 4609. doi: 10.1016/j.na.2009.03.041.

[17]

J. Simsen and M. S. Simsen, PDE and ODE limit problems for $p(x)$-Laplacian parabolic equations,, \emph{J. Math. Anal. Appl.}, 383 (2011), 71. doi: 10.1016/j.jmaa.2011.05.003.

[18]

J. Simsen, M. S. Simsen and M. R. T. Primo, Continuity of the flows and upper semicontinuity of global attractors for $p_s(x)$-Laplacian parabolic problems,, \emph{J. Math. Anal. Appl.}, 398 (2013), 138. doi: 10.1016/j.jmaa.2012.08.047.

[19]

J. Simsen, M. S. Simsen and M. R. T. Primo, On $p_s(x)$-Laplacian parabolic problems with non-globally Lipschitz forcing term,, \emph{Z. Anal. Anwend.}, 33 (2014), 447. doi: 10.4171/ZAA/1522.

[20]

J. Simsen, M. S. Simsen and F. B. Rocha, Existence of solutions for some classes of parabolic problems involving variable exponents,, \emph{Nonlinear Stud.}, 21 (2014), 113.

[21]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8.

[1]

Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653

[2]

Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1

[3]

Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079

[4]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[5]

Mostafa Bendahmane, Kenneth Hvistendahl Karlsen, Mazen Saad. Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1201-1220. doi: 10.3934/cpaa.2013.12.1201

[6]

Messoud Efendiev, Alain Miranville. Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity . Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 399-424. doi: 10.3934/dcds.1999.5.399

[7]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[8]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[9]

Peter E. Kloeden, Thomas Lorenz. Pullback attractors of reaction-diffusion inclusions with space-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1909-1964. doi: 10.3934/dcdsb.2017114

[10]

Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301

[11]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[12]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[13]

María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307

[14]

Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189

[15]

Jorge Ferreira, Hermenegildo Borges de Oliveira. Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2431-2453. doi: 10.3934/dcds.2017105

[16]

Peter E. Kloeden, Thomas Lorenz, Meihua Yang. Reaction-diffusion equations with a switched--off reaction zone. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1907-1933. doi: 10.3934/cpaa.2014.13.1907

[17]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[18]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[19]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[20]

Antoine Mellet, Jean-Michel Roquejoffre, Yannick Sire. Generalized fronts for one-dimensional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 303-312. doi: 10.3934/dcds.2010.26.303

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

[Back to Top]