\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and nonuniqueness of homoclinic solutions for second-order Hamiltonian systems with mixed nonlinearities

Abstract / Introduction Related Papers Cited by
  • In this paper, we study the existence of homoclinic solutions to the following second-order Hamiltonian systems \begin{eqnarray} \ddot{u}(t)-L(t)u(t)+\nabla W(t,u(t))=0,\quad \forall t\in R, \end{eqnarray} where $L(t)$ is a symmetric and positive definite matrix for all $t\in R$. The nonlinear potential $W$ is a combination of superlinear and sublinear terms. By different conditions on the superlinear and sublinear terms, we obtain existence and nonuniqueness of nontrivial homoclinic solutions to above systems.
    Mathematics Subject Classification: Primary: 34C37, 37J45; Secondary: 47J30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.

    [2]

    A. Ambrosetti and V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova, 89 (1993), 177-194.

    [3]

    K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston 1993.doi: 10.1007/978-1-4612-0385-8.

    [4]

    P. C. Carrião and O. H. Miyagaki, Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems, J. Math. Anal. Appl., 230 (1999), 157-172.doi: 10.1006/jmaa.1998.6184.

    [5]

    H. W. Chen and Z. M. He, Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems, Advances in Difference Equations, 2014 (2014):161.

    [6]

    Y. H. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 25 (1995), 1095-1113.doi: 10.1016/0362-546X(94)00229-B.

    [7]

    Y. H. Ding and S. J. Li, Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal. Appl., 189 (1995), 585-601.doi: 10.1006/jmaa.1995.1037.

    [8]

    P. L. Felmer and Elves A. De B. Silva, Homoclinic and periodic orbits for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 285-301.

    [9]

    G. H. Fei, The existence of homoclinic orbits for Hamiltonian systems with the potentials changing sign, Chinese Ann. Math. Ser. B, 17 (1996), 403-410.

    [10]

    P. Korman and A. C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems, Electron. J. Differential Equations, 1994 (1994), 1-10.

    [11]

    S. P. Lu, Homoclinic solutions for a nonlinear second order differential system with p-Laplacian operator, Nonlinear Anal. RWA., 12 (2011), 525-534.doi: 10.1016/j.nonrwa.2010.06.037.

    [12]

    Y. Lv and C.-L. Tang, Homoclinic orbits for second-order Hamiltonian systems with subquadratic potentials, Chaos, Solitons & Fractals, 57 (2013), 137-145.doi: 10.1016/j.chaos.2013.09.007.

    [13]

    W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Differential and Integral Equations, 5 (1992), 1115-1120.

    [14]

    Z.-Q. Ou and C.-L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems, J. Math. Anal. Appl., 291 (2004), 203-213.doi: 10.1016/j.jmaa.2003.10.026.

    [15]

    E. Paturel, Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. Var. Partial Differential Equations, 12 (2001), 117-143.doi: 10.1007/PL00009909.

    [16]

    P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in CBMS, Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.

    [17]

    P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38.doi: 10.1017/S0308210500024240.

    [18]

    P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991), 473-499.doi: 10.1007/BF02571356.

    [19]

    J. Sun, H. Chen and J. J. Nieto, Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems, J. Math. Anal. Appl., 373 (2011), 20-29.doi: 10.1016/j.jmaa.2010.06.038.

    [20]

    X. H. Tang and X. Y. Lin, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Pro. Roy. Soc. Edin., 141 (2011), 1103-1119.doi: 10.1017/S0308210509001346.

    [21]

    X. H. Tang and X. Y. Lin, Infinitely many homoclinic orbits for Hamiltonian systems with indefinite sign subquadratic potentials, Nonlinear Anal., 74 (2011), 6314-6325.doi: 10.1016/j.na.2011.06.010.

    [22]

    L.-L. Wan and C.-L. Tang, Existence of homoclinic orbits for second order Hamiltonian systems without (AR) condition, Nonlinear Anal., 74 (2011), 5303-5313.doi: 10.1016/j.na.2011.05.011.

    [23]

    L. Yang, H. Chen and J. Sun, Infinitely many homoclinic solutions for some second order Hamiltonian systems, Nonlinear Anal., 74 (2011), 6459-6468.doi: 10.1016/j.na.2011.06.029.

    [24]

    Y. W. Y and C.-L. Tang, Multiple homoclinic solutions for second-order perturbed Hamiltonian systems, Studies in Applied Mathematics, 132 (2014), 112-137.doi: 10.1111/sapm.12023.

    [25]

    R. Yuan and Z. Zhang, Homoclinic solutions for a class of second order Hamiltonian systems, Results in Math., 61 (2012) 195-208.doi: 10.1007/s00025-010-0088-3.

    [26]

    M.-H Yang and Z.-Q. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities, Nonlinear Anal., 74 (2011), 2635-2646.doi: 10.1016/j.na.2010.12.019.

    [27]

    Z. Zhang, X. Tian and R. Yuan, Homoclinic solutions for subquadratic Hamiltonian systems without coercive conditions, Taiwanese J. Math., 18 (2014), 1089-1105.doi: 10.11650/tjm.18.2014.3508.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return