Citation: |
[1] |
M. van den Berg and S. Srisatkunarajah, Heat flow and Brownian motion for a region in $\mathbb R^2$ with a polygonal boundary, Probab. Theory Related Fields, 86 (1990), 41-52.doi: 10.1007/BF01207512. |
[2] |
P. Bleher, Distribution of energy levels of a quantum free particle on a surface of revolution, Duke Math. J., 74 (1994), 45-93.doi: 10.1215/S0012-7094-94-07403-6. |
[3] |
P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhauser Boston, 1992. |
[4] |
P. B. Gilkey, Asymptotic Formulae in Spectral Geometry, Chapman & Hall /CRC, Boca Raton 2004. |
[5] |
J. Fox, E. Greif, D. Kaplan and R. Strichartz, Spectrum of the Laplacian on Regular Polyhedral Surfaces, in preparation. |
[6] |
V. Ivrii, Precise Spectral Asymptotics for Elliptic Operators, Lecture Notes in Math 1100 (1984), Springer, Berlin. |
[7] |
S. Jayakar and R. Strichartz, Average number of lattice points in a disk, Comm. Pure Appl. Analysis, 15 (2016), 1-8. |
[8] |
M. Kac, Can one hear the shape of a drum, Amer. Math. Monthly, 783 (1966), 1-23. |
[9] |
D. V. Kosygin, A. A. Minasov and Ya. G. Sinai, Statistical properties of the spectra of Laplace Beltrami operators on Liouville surfaces, Russian Math. Surveys, 48 (1993), 142.doi: 10.1070/RM1993v048n04ABEH001052. |
[10] |
H. Lapointe, I. Potterovich and Yu. Safarov, Average growth of the spectral function on a Riemannian manifold, Comm. P. D. E., 34 (2009), 581-615.doi: 10.1080/03605300802537453. |
[11] |
T. Murray and R. Strichartz, Numerical investigations of spectral asymptotics on surfaces, in preparation. |
[12] |
P. Sarnak, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc., 40 (2003), 441-478.doi: 10.1090/S0273-0979-03-00991-1. |
[13] |
C. Sogge, Hangzhou Lectures on Eigenfunctions of the Laplacian, Princeton Univ. Press, Princeton 2014.doi: 10.1515/9781400850549. |
[14] |
R. Strichartz, Spectral asymptotics revisited, J. Fourier Anal. Appl., 18 (2012), 626-659.doi: 10.1007/s00041-012-9216-7. |
[15] |
Yu. G. Safarov, Riesz means of the distribution function of the eigenvalues of an elliptic operator, J. Sov. Math., 49 (1990), 1210-1212.doi: 10.1007/BF02208718. |
[16] |
R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Math. Soc. Fr., 91 (1963), 289-433. |