• Previous Article
    Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions
  • CPAA Home
  • This Issue
  • Next Article
    Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents
January  2016, 15(1): 91-102. doi: 10.3934/cpaa.2016.15.91

Multiple nontrivial solutions to a $p$-Kirchhoff equation

1. 

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China

2. 

School of Mathematical Sciences, Capital Normal University, Beijing 100048

Received  January 2015 Revised  April 2015 Published  December 2015

In this paper, by computing the relevant critical groups, we obtain nontrivial solutions via Morse theory to the nonlocal $p$-Kirchhoff-type quasilinear elliptic equation \begin{eqnarray} (P)\quad\quad &&\displaystyle\bigg[M\bigg(\int_\Omega|\nabla u|^p dx\bigg)\bigg]^{p-1}(-\Delta_pu) = f(x,u), \quad x\in\Omega,\\ && u=0, \quad x\in \partial \Omega, \end{eqnarray} where $\Omega \subset \mathbb R^N$ is a bounded open domain with smooth boundary $\partial \Omega$ and $N \geq 3$.
Citation: Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$-Kirchhoff equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 91-102. doi: 10.3934/cpaa.2016.15.91
References:
[1]

C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85. doi: 10.1016/j.camwa.2005.01.008. Google Scholar

[2]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string,, Trans. Amer. Math. Soc., 348 (1996), 305. doi: 10.1090/S0002-9947-96-01532-2. Google Scholar

[3]

T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlinear Anal., 28 (1997), 419. doi: 10.1016/0362-546X(95)00167-T. Google Scholar

[4]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solutions Problems,, first ed., (1993). doi: 10.1007/978-1-4612-0385-8. Google Scholar

[5]

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems,, Nonlinear Anal., 30 (1997), 4619. doi: 10.1016/S0362-546X(97)00169-7. Google Scholar

[6]

F. J. S. A. Corrêa and G. M. Figueiredo, On a elliptic equation of $p$-Kirchhoff type via variational methods,, Bull. Aust. Math. Soc., 74 (2006), 263. doi: 10.1017/S000497270003570X. Google Scholar

[7]

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data,, Invent. Math., 108 (1992), 247. doi: 10.1007/BF02100605. Google Scholar

[8]

M. Dreher, The Kirchhoff equation for the $p$-Laplacian,, Rend. Semin. Mat. Univ. Politec. Torino, 64 (2006), 217. Google Scholar

[9]

M. Dreher, The ware equation for the $p$-Laplacian,, Hokkaido Math. J., 36 (2007), 21. doi: 10.14492/hokmj/1285766660. Google Scholar

[10]

Q. Jiu and J. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian,, J. Math. Anal. Appl., 281 (2003), 587. doi: 10.1016/S0022-247X(03)00165-3. Google Scholar

[11]

G. Kirchhoff, Mechanik,, Teubner, (1883). Google Scholar

[12]

S. Li and J. Liu, Some existence theorems on multiple critical points and their applications,, Kexue Tongbao, 17 (1984), 1025. Google Scholar

[13]

P. Lindqvist, On the equation div$(|\nabla u|^{p-2}\nabla u) + \lambda|u|^{p-2}u=0$,, Proc. Amer. Math. Soc., 109 (1990), 157. doi: 10.2307/2048375. Google Scholar

[14]

J. L. Lions, On some equations in boundary value problems of mathematical physics,, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, (1997), 284. Google Scholar

[15]

D. Liu and P. Zhao, Multiple nontrivial solutions to a $p$-Kirchhoff equation,, Nonlinear Anal, 75 (2012), 5032. doi: 10.1016/j.na.2012.04.018. Google Scholar

[16]

J. Liu, A Morse index for a saddle point,, Syst. Sc. Math. Sc., 2 (1989), 32. Google Scholar

[17]

S. Liu, Existence of solutions to a superlinear p-Laplacian equation,, Electron. J. Differential Equations, 66 (2001), 1. Google Scholar

[18]

J. Liu and J. Su, Remarks on multiple nontrivial solutions for quasilinear resonant problems,, J. Math. Anal. Appl., 258 (2001), 209. doi: 10.1006/jmaa.2000.7374. Google Scholar

[19]

A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, Nonlinear Anal., 70 (2009), 1275. doi: 10.1016/j.na.2008.02.011. Google Scholar

[20]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, first ed., (1989). doi: 10.1007/978-1-4757-2061-7. Google Scholar

[21]

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246. doi: 10.1016/j.jde.2005.03.006. Google Scholar

[22]

J. Su, Multiplicity results for asymptotically linear elliptic problems at resonance,, J. Math. Anal. Appl., 278 (2003), 397. doi: 10.1016/S0022-247X(02)00707-2. Google Scholar

[23]

J. Sun and S. Liu, Nontrivial solutions of Kirchhoff type problems,, Applied Mathematics Letters, 25 (2012), 500. doi: 10.1016/j.aml.2011.09.045. Google Scholar

[24]

Z. Q. Wang, On a superlinear elliptic equation,, Ann. Inst. H. Poincaré, 8 (1991), 43. Google Scholar

[25]

Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

show all references

References:
[1]

C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85. doi: 10.1016/j.camwa.2005.01.008. Google Scholar

[2]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string,, Trans. Amer. Math. Soc., 348 (1996), 305. doi: 10.1090/S0002-9947-96-01532-2. Google Scholar

[3]

T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlinear Anal., 28 (1997), 419. doi: 10.1016/0362-546X(95)00167-T. Google Scholar

[4]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solutions Problems,, first ed., (1993). doi: 10.1007/978-1-4612-0385-8. Google Scholar

[5]

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems,, Nonlinear Anal., 30 (1997), 4619. doi: 10.1016/S0362-546X(97)00169-7. Google Scholar

[6]

F. J. S. A. Corrêa and G. M. Figueiredo, On a elliptic equation of $p$-Kirchhoff type via variational methods,, Bull. Aust. Math. Soc., 74 (2006), 263. doi: 10.1017/S000497270003570X. Google Scholar

[7]

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data,, Invent. Math., 108 (1992), 247. doi: 10.1007/BF02100605. Google Scholar

[8]

M. Dreher, The Kirchhoff equation for the $p$-Laplacian,, Rend. Semin. Mat. Univ. Politec. Torino, 64 (2006), 217. Google Scholar

[9]

M. Dreher, The ware equation for the $p$-Laplacian,, Hokkaido Math. J., 36 (2007), 21. doi: 10.14492/hokmj/1285766660. Google Scholar

[10]

Q. Jiu and J. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian,, J. Math. Anal. Appl., 281 (2003), 587. doi: 10.1016/S0022-247X(03)00165-3. Google Scholar

[11]

G. Kirchhoff, Mechanik,, Teubner, (1883). Google Scholar

[12]

S. Li and J. Liu, Some existence theorems on multiple critical points and their applications,, Kexue Tongbao, 17 (1984), 1025. Google Scholar

[13]

P. Lindqvist, On the equation div$(|\nabla u|^{p-2}\nabla u) + \lambda|u|^{p-2}u=0$,, Proc. Amer. Math. Soc., 109 (1990), 157. doi: 10.2307/2048375. Google Scholar

[14]

J. L. Lions, On some equations in boundary value problems of mathematical physics,, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, (1997), 284. Google Scholar

[15]

D. Liu and P. Zhao, Multiple nontrivial solutions to a $p$-Kirchhoff equation,, Nonlinear Anal, 75 (2012), 5032. doi: 10.1016/j.na.2012.04.018. Google Scholar

[16]

J. Liu, A Morse index for a saddle point,, Syst. Sc. Math. Sc., 2 (1989), 32. Google Scholar

[17]

S. Liu, Existence of solutions to a superlinear p-Laplacian equation,, Electron. J. Differential Equations, 66 (2001), 1. Google Scholar

[18]

J. Liu and J. Su, Remarks on multiple nontrivial solutions for quasilinear resonant problems,, J. Math. Anal. Appl., 258 (2001), 209. doi: 10.1006/jmaa.2000.7374. Google Scholar

[19]

A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, Nonlinear Anal., 70 (2009), 1275. doi: 10.1016/j.na.2008.02.011. Google Scholar

[20]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, first ed., (1989). doi: 10.1007/978-1-4757-2061-7. Google Scholar

[21]

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246. doi: 10.1016/j.jde.2005.03.006. Google Scholar

[22]

J. Su, Multiplicity results for asymptotically linear elliptic problems at resonance,, J. Math. Anal. Appl., 278 (2003), 397. doi: 10.1016/S0022-247X(02)00707-2. Google Scholar

[23]

J. Sun and S. Liu, Nontrivial solutions of Kirchhoff type problems,, Applied Mathematics Letters, 25 (2012), 500. doi: 10.1016/j.aml.2011.09.045. Google Scholar

[24]

Z. Q. Wang, On a superlinear elliptic equation,, Ann. Inst. H. Poincaré, 8 (1991), 43. Google Scholar

[25]

Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

[1]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[2]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[3]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[4]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[5]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[6]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[7]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[8]

Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841

[9]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[10]

Jijiang Sun, Shiwang Ma. Nontrivial solutions for Kirchhoff type equations via Morse theory. Communications on Pure & Applied Analysis, 2014, 13 (2) : 483-494. doi: 10.3934/cpaa.2014.13.483

[11]

Salvatore A. Marano, Sunra J. N. Mosconi. Multiple solutions to elliptic inclusions via critical point theory on closed convex sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3087-3102. doi: 10.3934/dcds.2015.35.3087

[12]

E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209

[13]

Anna Maria Candela, Giuliana Palmieri. Some abstract critical point theorems and applications. Conference Publications, 2009, 2009 (Special) : 133-142. doi: 10.3934/proc.2009.2009.133

[14]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

[15]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[16]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[17]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[18]

Lele Du, Minbo Yang. Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5847-5866. doi: 10.3934/dcds.2019219

[19]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[20]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]