2016, 15(5): 1797-1807. doi: 10.3934/cpaa.2016015

A direct method of moving planes for fractional Laplacian equations in the unit ball

1. 

Department of Mathematics, Henan Normal University, Xinxiang, 453007, China

Received  October 2015 Revised  March 2016 Published  July 2016

In this paper, we employ a direct method of moving planes for the fractional Laplacian equation in the unit ball. Instead of using the conventional extension method introduced by Caffarelli and Silvestre [6], Chen, Li and Li developed a direct method of moving planes for the fractional Laplacian [8]. Inspired by this new method, in this paper we deal with the semilinear pseudo -differential equation in the unit ball directly. We first review key ingredients needed in the method of moving planes in a bounded domain, such as the narrow region principle for the fractional Laplacian. Then, by using this new method, we obtain the radial symmetry and monotonicity of positive solutions for some interesting semi-linear equations.
Citation: Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015
References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus,, 2$^{st}$ edition, (2009). doi: 10.1017/CBO9780511809781.

[2]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics,, 121, (1996).

[3]

J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media,, \emph{Statistical mechanics, 195 (1990), 127. doi: 10.1016/0370-1573(90)90099-N.

[4]

C. Brändle, E. Colorado, A. De Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc Royal Soc Edinburgh}, A143 (2013), 39.

[5]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv in Math}, 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025.

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm Partial Differential Equations}, 32 (2007), 1245. doi: 10.1080/03605300600987306.

[7]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, \emph{Ann Math}, 171 (2010), 1903. doi: 10.4007/annals.2010.171.1903.

[8]

W. X. Chen, C. C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian,, preprint, ().

[9]

W. X. Chen, C. C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm Pure Appl Math}, 59 (2006), 330. doi: 10.1002/cpa.20116.

[10]

W. X. Chen, C. C. Li and B. Ou, Qualitative properities of solutions for an integral equation,, \emph{Disc Cont Dyn Sys}, 12 (2005), 347.

[11]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems,, preprint, ().

[12]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence,, \emph{Mathematical Foundation of Turbulent Viscous Flows Lecture Notes in Mathematics}, 1871 (2006), 1. doi: 10.1007/11545989_1.

[13]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, \emph{Comm Math Phys}, 68 (1979), 209.

[14]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, \emph{Mathematical Analysis and Applications}, (1981), 369.

[15]

C. C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, \emph{SIAM Journal on Mathematical Analysis}, 40 (2008), 1049. doi: 10.1137/080712301.

[16]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, \emph{Journal of Differential Equations}, 245 (2008), 2551. doi: 10.1016/j.jde.2008.04.008.

[17]

E. Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces,, \emph{Bull Sci Math}, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004.

[18]

V. E. Tarasov and G. M. Zaslavsky, Fractional dynamics of systems with long-range interaction,, \emph{Comm Non1 Sci Numer Simul}, 11 (2006), 885. doi: 10.1016/j.cnsns.2006.03.005.

show all references

References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus,, 2$^{st}$ edition, (2009). doi: 10.1017/CBO9780511809781.

[2]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics,, 121, (1996).

[3]

J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media,, \emph{Statistical mechanics, 195 (1990), 127. doi: 10.1016/0370-1573(90)90099-N.

[4]

C. Brändle, E. Colorado, A. De Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc Royal Soc Edinburgh}, A143 (2013), 39.

[5]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv in Math}, 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025.

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm Partial Differential Equations}, 32 (2007), 1245. doi: 10.1080/03605300600987306.

[7]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, \emph{Ann Math}, 171 (2010), 1903. doi: 10.4007/annals.2010.171.1903.

[8]

W. X. Chen, C. C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian,, preprint, ().

[9]

W. X. Chen, C. C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm Pure Appl Math}, 59 (2006), 330. doi: 10.1002/cpa.20116.

[10]

W. X. Chen, C. C. Li and B. Ou, Qualitative properities of solutions for an integral equation,, \emph{Disc Cont Dyn Sys}, 12 (2005), 347.

[11]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems,, preprint, ().

[12]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence,, \emph{Mathematical Foundation of Turbulent Viscous Flows Lecture Notes in Mathematics}, 1871 (2006), 1. doi: 10.1007/11545989_1.

[13]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, \emph{Comm Math Phys}, 68 (1979), 209.

[14]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, \emph{Mathematical Analysis and Applications}, (1981), 369.

[15]

C. C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, \emph{SIAM Journal on Mathematical Analysis}, 40 (2008), 1049. doi: 10.1137/080712301.

[16]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, \emph{Journal of Differential Equations}, 245 (2008), 2551. doi: 10.1016/j.jde.2008.04.008.

[17]

E. Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces,, \emph{Bull Sci Math}, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004.

[18]

V. E. Tarasov and G. M. Zaslavsky, Fractional dynamics of systems with long-range interaction,, \emph{Comm Non1 Sci Numer Simul}, 11 (2006), 885. doi: 10.1016/j.cnsns.2006.03.005.

[1]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[2]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[3]

Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393

[4]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[5]

Honglan Zhu, Qin Ni, Meilan Zeng. A quasi-Newton trust region method based on a new fractional model. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 237-249. doi: 10.3934/naco.2015.5.237

[6]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[7]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[8]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[9]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[10]

Toshiko Ogiwara, Hiroshi Matano. Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 1-34. doi: 10.3934/dcds.1999.5.1

[11]

Matteo Negri. Crack propagation by a regularization of the principle of local symmetry. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 147-165. doi: 10.3934/dcdss.2013.6.147

[12]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[13]

Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171

[14]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[15]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[16]

Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41

[17]

Dongbing Zha. Remarks on nonlinear elastic waves in the radial symmetry in 2-D. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4051-4062. doi: 10.3934/dcds.2016.36.4051

[18]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[19]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[20]

Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]