2016, 15(6): 2203-2219. doi: 10.3934/cpaa.2016034

Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge

1. 

Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal

Received  December 2015 Revised  July 2016 Published  September 2016

The Maxwell-Klein-Gordon equations in 2+1 dimensions in temporal gauge are locally well-posed for low regularity data even below energy level. The corresponding (3+1)-dimensional case was considered by Yuan. Fundamental for the proof is a partial null structure in the nonlinearity which allows to rely on bilinear estimates in wave-Sobolev spaces by d'Ancona, Foschi and Selberg, on an $(L^p_x L^q_t)$ - estimate for the solution of the wave equation, and on the proof of a related result for the Yang-Mills equations by Tao.
Citation: Hartmut Pecher. Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2203-2219. doi: 10.3934/cpaa.2016034
References:
[1]

P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions,, \emph{Contemporary Math.}, 526 (2010), 125. doi: 10.1090/conm/526/10379.

[2]

M. Beals, Self-spreading of singularities for solutions to semilinear wave equations,, \emph{Annals Math.}, 118 (1983), 187. doi: 10.2307/2006959.

[3]

M. Czubak and N. Pikula, Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 1669. doi: 10.3934/cpaa.2014.13.1669.

[4]

S. Klainerman and M. Machedon (Appendices by J. Bougain and D. Tataru), Remark on Strichartz-type inequalities,, \emph{Int. Math. Res. Notices}, 5 (1996), 201. doi: 10.1155/S1073792896000153.

[5]

S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy,, \emph{Duke Math. J.}, 74 (1994), 19. doi: 10.1215/S0012-7094-94-07402-4.

[6]

M. Machedon and J. Sterbenz, Almost optimal local well-posedness for the (3+1)-dimensional Maxwell-Klein-Gordon equations,, \emph{J. AMS}, 17 (2004), 297. doi: 10.1090/S0894-0347-03-00445-4.

[7]

V. Moncrief, Global existence of Maxwell-Klein-Gordon fields in (2+1)-dimensional spacetime,, \emph{J. Math. Phys.}, 21 (1980), 2291. doi: 10.1063/1.524669.

[8]

H. Pecher, Low regularity local well-posedness for the Maxwell-Klein-Gordon equations in Lorenz gauge,, \emph{Adv. Diff. Equ.}, 19 (2014), 359.

[9]

H. Pecher, Unconditional global well-posedness in energy space for the Maxwell-Klein-Gordon system in temporal gauge,, \emph{Adv. Diff. Equ.}, 20 (2015), 1009.

[10]

S. Selberg, Multilinear Space-time Estimates and Applications to Local Exisatence Theory for Nonlinear Wave Equations,, PhD. Thesis Princeton, (1999).

[11]

S. Selberg, Anisotropic bilinear $L^2$ estimates related to the 3D wave equation,, \emph{Int. Math. Res. Not.}, (2008).

[12]

S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge,, \emph{Comm. PDE}, 35 (2010), 1029. doi: 10.1080/03605301003717100.

[13]

T. Tao, Multilinear weighted convolutions of $L^2$-functions and applications to non-linear dispersive equations,, \emph{Amer. J. Math.}, 123 (2001), 838.

[14]

T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm,, \emph{J. Diff. Equ.}, 189 (2003), 366. doi: 10.1016/S0022-0396(02)00177-8.

[15]

J. Yuan, Global solutions of two coupled Maxwell systems in the temporal gauge,, \emph{Discr. Cont. Dyn. Syst.}, 36 (2016), 1709. doi: 10.3934/dcds.2016.36.1709.

show all references

References:
[1]

P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions,, \emph{Contemporary Math.}, 526 (2010), 125. doi: 10.1090/conm/526/10379.

[2]

M. Beals, Self-spreading of singularities for solutions to semilinear wave equations,, \emph{Annals Math.}, 118 (1983), 187. doi: 10.2307/2006959.

[3]

M. Czubak and N. Pikula, Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 1669. doi: 10.3934/cpaa.2014.13.1669.

[4]

S. Klainerman and M. Machedon (Appendices by J. Bougain and D. Tataru), Remark on Strichartz-type inequalities,, \emph{Int. Math. Res. Notices}, 5 (1996), 201. doi: 10.1155/S1073792896000153.

[5]

S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy,, \emph{Duke Math. J.}, 74 (1994), 19. doi: 10.1215/S0012-7094-94-07402-4.

[6]

M. Machedon and J. Sterbenz, Almost optimal local well-posedness for the (3+1)-dimensional Maxwell-Klein-Gordon equations,, \emph{J. AMS}, 17 (2004), 297. doi: 10.1090/S0894-0347-03-00445-4.

[7]

V. Moncrief, Global existence of Maxwell-Klein-Gordon fields in (2+1)-dimensional spacetime,, \emph{J. Math. Phys.}, 21 (1980), 2291. doi: 10.1063/1.524669.

[8]

H. Pecher, Low regularity local well-posedness for the Maxwell-Klein-Gordon equations in Lorenz gauge,, \emph{Adv. Diff. Equ.}, 19 (2014), 359.

[9]

H. Pecher, Unconditional global well-posedness in energy space for the Maxwell-Klein-Gordon system in temporal gauge,, \emph{Adv. Diff. Equ.}, 20 (2015), 1009.

[10]

S. Selberg, Multilinear Space-time Estimates and Applications to Local Exisatence Theory for Nonlinear Wave Equations,, PhD. Thesis Princeton, (1999).

[11]

S. Selberg, Anisotropic bilinear $L^2$ estimates related to the 3D wave equation,, \emph{Int. Math. Res. Not.}, (2008).

[12]

S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge,, \emph{Comm. PDE}, 35 (2010), 1029. doi: 10.1080/03605301003717100.

[13]

T. Tao, Multilinear weighted convolutions of $L^2$-functions and applications to non-linear dispersive equations,, \emph{Amer. J. Math.}, 123 (2001), 838.

[14]

T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm,, \emph{J. Diff. Equ.}, 189 (2003), 366. doi: 10.1016/S0022-0396(02)00177-8.

[15]

J. Yuan, Global solutions of two coupled Maxwell systems in the temporal gauge,, \emph{Discr. Cont. Dyn. Syst.}, 36 (2016), 1709. doi: 10.3934/dcds.2016.36.1709.

[1]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[2]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[3]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[4]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[5]

Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081

[6]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[7]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[8]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[9]

Jianjun Yuan. Global solutions of two coupled Maxwell systems in the temporal gauge. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1709-1719. doi: 10.3934/dcds.2016.36.1709

[10]

Pietro d’Avenia, Lorenzo Pisani, Gaetano Siciliano. Klein-Gordon-Maxwell systems in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 135-149. doi: 10.3934/dcds.2010.26.135

[11]

Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097

[12]

Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271

[13]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[14]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[15]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[16]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[17]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[18]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[19]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[20]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]