-
Previous Article
Periodic solutions for nonlocal fractional equations
- CPAA Home
- This Issue
-
Next Article
The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term
Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary
Institut Elie Cartan de Lorraine, Université de Lorraine, BP 70239,54506 Vandœuvre-lès-Nancy, France |
Given a high-order elliptic operator on a compact manifold with or without boundary, we perform the decomposition of Palais-Smale sequences for a nonlinear problem as a sum of bubbles. This is a generalization of the celebrated 1984 result of Struwe [
References:
[1] |
E. H. Abdallah and J. Vétois,
Sharp Sobolev asymptotics for critical anisotropic equations, Arch. Ration. Mech. Anal., 192 (2009), 1-36.
doi: 10.1007/s00205-008-0122-8. |
[2] |
S. Almaraz,
The asymptotic behavior of Palais-Smale sequences on manifolds with boundary, Pacific Math J., 269 (2014), 1-17.
doi: 10.2140/pjm.2014.269.1. |
[3] |
A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.
|
[4] |
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-13006-3. |
[5] |
T. Bartsch, T. Weth and M. Willem,
A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Partial Differential Equations, 18 (2003), 253-268.
doi: 10.1007/s00526-003-0198-9. |
[6] |
K. H. Fieseler and K. Tintarev, Concentration Compactness, Functional-analytic grounds and applications, Imperial College Press, London, 2007.
![]() |
[7] |
F. Gazzola, H. C. Grunau and M. Squassina,
Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143.
doi: 10.1007/s00526-002-0182-9. |
[8] |
F. Gazzola, H. C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics 1991, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-12245-3. |
[9] |
Y. Ge, J. Wei and F. Zhou,
A critical elliptic problem for polyharmonic operators, J. Funct. Anal., 260 (2011), 2247-2282.
doi: 10.1016/j.jfa.2011.01.005. |
[10] |
N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993.
doi: 10.1017/CBO9780511551703.![]() ![]() |
[11] |
E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. |
[12] |
E. Hebey, Introduction à l'analyse non linéaire sur les Variétés, Diderot, Paris, 1997. Google Scholar |
[13] |
E. Hebey and F. Robert,
Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Calc. Var. Partial Differential Equations, 13 (2001), 491-517.
doi: 10.1007/s005260100084. |
[14] |
P. L. Lions,
The concentration-compactness principle in the calculus of variations. The limit case. Ⅰ, Ⅱ, Rev. Mat. Iberoamericana, 1 (1985), 145-201.
doi: 10.4171/RMI/12. |
[15] |
S. Mazumdar,
GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions, J. Differential Equations, 261 (2016), 4997-5034.
doi: 10.1016/j.jde.2016.07.017. |
[16] |
W. Reichel and T. Weth,
A priori bounds and a Liouville theorem on a half-space for higherorder elliptic Dirichlet problems, Math. Z., 261 (2009), 805-827.
doi: 10.1007/s00209-008-0352-3. |
[17] |
F. Robert, Admissible Q-curvatures under isometries for the conformal GJMS operators, in Nonlinear Elliptic Partial Differential Equations, Contemp. Math, 540, Amer. Math. Soc. , Providence, RI (2011), 241-259.
doi: 10.1090/conm/540/10668. |
[18] |
N. Saintier,
Asymptotic estimates and blow-up theory for critical equations involving the p-Laplacian, Calc. Var. Partial Differential Equations, 25 (2006), 299-331.
doi: 10.1007/s00526-005-0344-7. |
[19] |
M. Struwe,
A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.
doi: 10.1007/BF01174186. |
[20] |
C. A. Swanson,
The best Sobolev constant, Appl. Anal., 47 (1992), 227-239.
doi: 10.1080/00036819208840142. |
show all references
References:
[1] |
E. H. Abdallah and J. Vétois,
Sharp Sobolev asymptotics for critical anisotropic equations, Arch. Ration. Mech. Anal., 192 (2009), 1-36.
doi: 10.1007/s00205-008-0122-8. |
[2] |
S. Almaraz,
The asymptotic behavior of Palais-Smale sequences on manifolds with boundary, Pacific Math J., 269 (2014), 1-17.
doi: 10.2140/pjm.2014.269.1. |
[3] |
A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.
|
[4] |
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-13006-3. |
[5] |
T. Bartsch, T. Weth and M. Willem,
A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Partial Differential Equations, 18 (2003), 253-268.
doi: 10.1007/s00526-003-0198-9. |
[6] |
K. H. Fieseler and K. Tintarev, Concentration Compactness, Functional-analytic grounds and applications, Imperial College Press, London, 2007.
![]() |
[7] |
F. Gazzola, H. C. Grunau and M. Squassina,
Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143.
doi: 10.1007/s00526-002-0182-9. |
[8] |
F. Gazzola, H. C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics 1991, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-12245-3. |
[9] |
Y. Ge, J. Wei and F. Zhou,
A critical elliptic problem for polyharmonic operators, J. Funct. Anal., 260 (2011), 2247-2282.
doi: 10.1016/j.jfa.2011.01.005. |
[10] |
N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993.
doi: 10.1017/CBO9780511551703.![]() ![]() |
[11] |
E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. |
[12] |
E. Hebey, Introduction à l'analyse non linéaire sur les Variétés, Diderot, Paris, 1997. Google Scholar |
[13] |
E. Hebey and F. Robert,
Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Calc. Var. Partial Differential Equations, 13 (2001), 491-517.
doi: 10.1007/s005260100084. |
[14] |
P. L. Lions,
The concentration-compactness principle in the calculus of variations. The limit case. Ⅰ, Ⅱ, Rev. Mat. Iberoamericana, 1 (1985), 145-201.
doi: 10.4171/RMI/12. |
[15] |
S. Mazumdar,
GJMS-type Operators on a compact Riemannian manifold: Best constants and Coron-type solutions, J. Differential Equations, 261 (2016), 4997-5034.
doi: 10.1016/j.jde.2016.07.017. |
[16] |
W. Reichel and T. Weth,
A priori bounds and a Liouville theorem on a half-space for higherorder elliptic Dirichlet problems, Math. Z., 261 (2009), 805-827.
doi: 10.1007/s00209-008-0352-3. |
[17] |
F. Robert, Admissible Q-curvatures under isometries for the conformal GJMS operators, in Nonlinear Elliptic Partial Differential Equations, Contemp. Math, 540, Amer. Math. Soc. , Providence, RI (2011), 241-259.
doi: 10.1090/conm/540/10668. |
[18] |
N. Saintier,
Asymptotic estimates and blow-up theory for critical equations involving the p-Laplacian, Calc. Var. Partial Differential Equations, 25 (2006), 299-331.
doi: 10.1007/s00526-005-0344-7. |
[19] |
M. Struwe,
A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.
doi: 10.1007/BF01174186. |
[20] |
C. A. Swanson,
The best Sobolev constant, Appl. Anal., 47 (1992), 227-239.
doi: 10.1080/00036819208840142. |
[1] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 697-735. doi: 10.3934/cpaa.2020286 |
[2] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[3] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[4] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296 |
[5] |
Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021005 |
[6] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[7] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[8] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[9] |
Ke Yang, Wencheng Zou, Zhengrong Xiang, Ronghao Wang. Fully distributed consensus for higher-order nonlinear multi-agent systems with unmatched disturbances. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1535-1551. doi: 10.3934/dcdss.2020396 |
[10] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[11] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[12] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292 |
[13] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[14] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[15] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[16] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[17] |
Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274 |
[18] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[19] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[20] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]