• Previous Article
    On uniform estimate of complex elliptic equations on closed Hermitian manifolds
  • CPAA Home
  • This Issue
  • Next Article
    Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent
September 2017, 16(5): 1571-1585. doi: 10.3934/cpaa.2017075

Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition

Division of Mathematical Sciences, Graduate School of Comparative Culture, Kurume University, Miimachi, Kurume, Fukuoka 839-8502, Japan

Received  September 2015 Revised  October 2015 Published  May 2017

Fund Project: To Shiho and Sarasa from Grandpapa. The author is partially supported by the Grant-in-Aid for Scientific Research (No.24540198) from Japan Society for the Promotion of Science

Let
$ D\subset R^{d}$
be a bounded domain in the
$d- $
dimensional Euclidian space
$R^{d} $
with smooth boundary $Γ=\partial D.$ In this paper we consider exponential boundary stabilization for weak solutions to the wave equation with nonlinear boundary condition:
$\left\{ \begin{gathered}u_{tt}(t)-ρ(t)Δ u(t)+b(x)u_{t}(t)=f(u(t)), \\ u(t)=0\ \ \text{on }Γ_{0}×(0,T), \\ \dfrac{\partial u(t)}{\partialν}+γ(u_{t}(t))=0\ \ \text{on }Γ _{1}×(0,T), \\ u(0)=u_{0},u_{t}(0)=u_{1},\end{gathered} \right.$
where
$\left\| {{u_0}} \right\| < {\lambda _\beta }, $
$ E(0) < d_{β},$
where
$λ_{β}, $
$d_{β} $
are defined in (21), (22) and
$Γ=Γ_{0}\cupΓ_{1} $
and
$\bar{Γ}_{0}\cap\bar{Γ}_{1}=φ. $
Citation: Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075
References:
[1]

F. D. Araruna and A. B. Maciel, Existence and boundary stabilization of the semilinear wave equation, Nonlinear Analysis, 67 (2007), 1288-1305. doi: 10.1016/j.na.2006.07.015.

[2]

M. M. CavalcantiV. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158. doi: 10.1016/j.jde.2004.04.011.

[3]

M. M. Cavalcanti and V. N. Domingos Cavalcanti, Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appli., 291 (2004), 109-127. doi: 10.1016/j.jmaa.2003.10.020.

[4]

M. M. CavalcantiV. N. Domingos Cavalcanti and I. Lasiecka, Well posedness and optimal decay rates for the wave equation with nonlinear damping-source interaction, J. Differential Equations, 236 (2007), 407-459.

[5]

M. M. CavalcantiV. N. D. Cavalcanti and J. A. Soriano, On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions, J. Math. Anal. Appli., 281 (2003), 108-124.

[6]

V. Georgiev and G. Todorova, Existence of a solution of the wave equation with damping and source terms, J. Differential Equations, 109 (1994), 295-308. doi: 10.1006/jdeq.1994.1051.

[7]

S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damping wave equation with dynamic boundary conditions, Ad. Diff. Equ., 13 (2008), 1051-1074.

[8]

B. Guo and Z-C. Shao, On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback, Nonlinear Analysis, 71 (2009), 5961-5978. doi: 10.1016/j.na.2009.05.018.

[9]

V. Komornik and E. Zuazua, A direct method for boundary stabilization of the wave equation, J. Math. Pures et appl., 69 (1990), 33-54.

[10]

A. T. LouredoM. A. Ferreira and M. M. Miranda, On a nonlinear wave equation with boundary damping, Math. Meth. in Applied Sciences, 37 (2014), 1278-1302.

[11]

J. Malek, J. Necas, M. Rokyta and M. Ruzicka, Weak and Measure-valued Solutions to Evolutionary PDEs Chapman and Hall, 1996. doi: 10.1007/978-1-4899-6824-1.

[12]

S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math Nachr, 231 (2001), 105-111. doi: 10.1002/1522-2616(200111)231:1<105::AID-MANA105>3.3.CO;2-9.

[13]

K. Ono, Asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Meth. in Applied Sciences, 20 (1997), 151-177. doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.3.CO;2-S.

[14]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer-Verlarg, Berlin, 1989. doi: 10.1007/978-1-4684-0313-8.

[15]

E. Vitillaro, A potential well method for the wave equation with nonlinear source and boundary damping terms, Glasgow Math. J, 44 (2002), 375-395. doi: 10.1017/S0017089502030045.

[16]

E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differential Equations, 186 (2002), 259-298. doi: 10.1016/S0022-0396(02)00023-2.

[17]

Zai-yun Zhang and Xiu-jin Miao, Global existence and uniform decay for wave equation with dissipative term and boundary damping, Computers and Math. Appli., 59 (2010), 1003-1018. doi: 10.1016/j.camwa.2009.09.008.

show all references

References:
[1]

F. D. Araruna and A. B. Maciel, Existence and boundary stabilization of the semilinear wave equation, Nonlinear Analysis, 67 (2007), 1288-1305. doi: 10.1016/j.na.2006.07.015.

[2]

M. M. CavalcantiV. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158. doi: 10.1016/j.jde.2004.04.011.

[3]

M. M. Cavalcanti and V. N. Domingos Cavalcanti, Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appli., 291 (2004), 109-127. doi: 10.1016/j.jmaa.2003.10.020.

[4]

M. M. CavalcantiV. N. Domingos Cavalcanti and I. Lasiecka, Well posedness and optimal decay rates for the wave equation with nonlinear damping-source interaction, J. Differential Equations, 236 (2007), 407-459.

[5]

M. M. CavalcantiV. N. D. Cavalcanti and J. A. Soriano, On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions, J. Math. Anal. Appli., 281 (2003), 108-124.

[6]

V. Georgiev and G. Todorova, Existence of a solution of the wave equation with damping and source terms, J. Differential Equations, 109 (1994), 295-308. doi: 10.1006/jdeq.1994.1051.

[7]

S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damping wave equation with dynamic boundary conditions, Ad. Diff. Equ., 13 (2008), 1051-1074.

[8]

B. Guo and Z-C. Shao, On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback, Nonlinear Analysis, 71 (2009), 5961-5978. doi: 10.1016/j.na.2009.05.018.

[9]

V. Komornik and E. Zuazua, A direct method for boundary stabilization of the wave equation, J. Math. Pures et appl., 69 (1990), 33-54.

[10]

A. T. LouredoM. A. Ferreira and M. M. Miranda, On a nonlinear wave equation with boundary damping, Math. Meth. in Applied Sciences, 37 (2014), 1278-1302.

[11]

J. Malek, J. Necas, M. Rokyta and M. Ruzicka, Weak and Measure-valued Solutions to Evolutionary PDEs Chapman and Hall, 1996. doi: 10.1007/978-1-4899-6824-1.

[12]

S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math Nachr, 231 (2001), 105-111. doi: 10.1002/1522-2616(200111)231:1<105::AID-MANA105>3.3.CO;2-9.

[13]

K. Ono, Asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Meth. in Applied Sciences, 20 (1997), 151-177. doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.3.CO;2-S.

[14]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer-Verlarg, Berlin, 1989. doi: 10.1007/978-1-4684-0313-8.

[15]

E. Vitillaro, A potential well method for the wave equation with nonlinear source and boundary damping terms, Glasgow Math. J, 44 (2002), 375-395. doi: 10.1017/S0017089502030045.

[16]

E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differential Equations, 186 (2002), 259-298. doi: 10.1016/S0022-0396(02)00023-2.

[17]

Zai-yun Zhang and Xiu-jin Miao, Global existence and uniform decay for wave equation with dissipative term and boundary damping, Computers and Math. Appli., 59 (2010), 1003-1018. doi: 10.1016/j.camwa.2009.09.008.

[1]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[2]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[3]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[4]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[5]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[6]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[7]

Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675

[8]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[9]

Vyacheslav A. Trofimov, Evgeny M. Trykin. A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Conference Publications, 2015, 2015 (special) : 1070-1078. doi: 10.3934/proc.2015.1070

[10]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[11]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[12]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[13]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[14]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[15]

Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations & Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645

[16]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

[17]

Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627

[18]

Makoto Nakamura. Remarks on global solutions of dissipative wave equations with exponential nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1533-1545. doi: 10.3934/cpaa.2015.14.1533

[19]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[20]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (5)
  • HTML views (14)
  • Cited by (2)

Other articles
by authors

[Back to Top]