September 2017, 16(5): 1697-1706. doi: 10.3934/cpaa.2017081

A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources

School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China

* Corresponding author

Received  September 2016 Revised  March 2017 Published  May 2017

Fund Project: This work is supported by the National Natural Science Foundation of China [Grant No. 11671188]

In this paper, we consider positive solutions of a Cauchy problem for the following quasilinear degenerate parabolic equation with weighted nonlocal sources:
$u_{t}=\Delta_{p}u+ \left(\int_{\mathbb{R}^{N}}K(x)u^{q}(x, t)dx\right)^{\frac{r-1}{q}}u^{s+1}, (x, t) \in \mathbb{R}^{N} \times(0, T), $
where
$N≥1$
,
$p>2$
,
$q$
,
$r≥1$
,
$s≥0$
, and
$r+s>1$
. We classify global and non-global solutions of the equation in the coexistence region by finding a new second critical exponent via the slow decay asymptotic behavior of an initial value at spatial infinity, and the life span of non-global solution is studied.
Citation: Lingwei Ma, Zhong Bo Fang. A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1697-1706. doi: 10.3934/cpaa.2017081
References:
[1]

N. V. Afanas'eva and A. F. Tedeev, Theorems on the existence and nonexistence of solutions of the Cauchy problem for degenerate parabolic equations with nonlocal source, Ukr. Math. J., 57 (2005), 1687-1711. doi: 10.1007/s11253-006-0024-6.

[2]

J. I. Diaz and J. E. Saá, Uniqueness of very singular self-similar solution of a quasilinear degenerate parabolic equation with absorption, Publ. Mat., 36 (1992), 19-38. doi: 10.5565/PUBLMAT_36192_02.

[3]

H. Fujita, On the blowing up of solution of the Cauchy problem for $u_{t}=Δ u+u^{1+α}$, J. Fac. Sci. Univ. Tokyo Sect. Ⅰ, 13 (1966), 109-124.

[4]

J. Furter and M. Grinfield, Local vs. non-local interactions in populations dynamics, J. Math. Biol., 27 (1989), 65-80. doi: 10.1007/BF00276081.

[5]

V. A. Galaktionov, Conditions for nonexistence in the large and localization of solutions of the Cauchy problem for a class of nonlinear parabolic equations, Zh. Vychisl. Mat. i Mat. Fiz., 23 (1983), 1341-1354.

[6]

V. A. Galaktionov and H. A. Levine, A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., 34 (1998), 1005-1027. doi: 10.1016/S0362-546X(97)00716-5.

[7]

K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equation, DProc. Japan Acad., 49 (1973), 503-505.

[8]

T. Y. Lee and W. M. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc., 333 (1992), 365-378. doi: 10.2307/2154114.

[9]

Y. H. Li and C. L. Mu, Life span and a new critical exponent for a degenerate parabolic equation, J. Differential Equations, 207 (2004), 392-406. doi: 10.1016/j.jde.2004.08.024.

[10]

C. L. MuY. H. Li and Y. Wang, Life span and a new critical exponent for a quasilinear degenerate parabolic equation with slow decay initial values, Nonlinear Anal. Real World Appl., 11 (2010), 198-206. doi: 10.1016/j.nonrwa.2008.10.048.

[11]

C. L. MuR. Zeng and S. M. Zhou, Life span and a new critical exponent for a doubly degenerate parabolic equation with slow decay initial values, J. Math. Anal. Appl., 384 (2011), 181-191. doi: 10.1016/j.jmaa.2010.12.042.

[12] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. doi: 10.1007/978-1-4612-0873-0.
[13]

Y. W. Qi, Critical exponents of degenerate parabolic equations, Sci. China Ser. A, 38 (1995), 1153-1162.

[14]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40. doi: 10.1007/BF02761845.

[15]

C. X. YangF. Y. Ji and S. S. Zhou, The second critical exponent for a semilinear nonlocal parabolic equation, J. Math. Anal. Appl., 418 (2014), 231-237. doi: 10.1016/j.jmaa.2014.03.095.

[16]

J. N. Zhao, On the Cauchy problem and initial traces for the evolution P-Laplacian equations with strongly nonlinear sources, J. Differential Equations, 121 (1995), 329-383. doi: 10.1006/jdeq.1995.1132.

show all references

References:
[1]

N. V. Afanas'eva and A. F. Tedeev, Theorems on the existence and nonexistence of solutions of the Cauchy problem for degenerate parabolic equations with nonlocal source, Ukr. Math. J., 57 (2005), 1687-1711. doi: 10.1007/s11253-006-0024-6.

[2]

J. I. Diaz and J. E. Saá, Uniqueness of very singular self-similar solution of a quasilinear degenerate parabolic equation with absorption, Publ. Mat., 36 (1992), 19-38. doi: 10.5565/PUBLMAT_36192_02.

[3]

H. Fujita, On the blowing up of solution of the Cauchy problem for $u_{t}=Δ u+u^{1+α}$, J. Fac. Sci. Univ. Tokyo Sect. Ⅰ, 13 (1966), 109-124.

[4]

J. Furter and M. Grinfield, Local vs. non-local interactions in populations dynamics, J. Math. Biol., 27 (1989), 65-80. doi: 10.1007/BF00276081.

[5]

V. A. Galaktionov, Conditions for nonexistence in the large and localization of solutions of the Cauchy problem for a class of nonlinear parabolic equations, Zh. Vychisl. Mat. i Mat. Fiz., 23 (1983), 1341-1354.

[6]

V. A. Galaktionov and H. A. Levine, A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., 34 (1998), 1005-1027. doi: 10.1016/S0362-546X(97)00716-5.

[7]

K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equation, DProc. Japan Acad., 49 (1973), 503-505.

[8]

T. Y. Lee and W. M. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc., 333 (1992), 365-378. doi: 10.2307/2154114.

[9]

Y. H. Li and C. L. Mu, Life span and a new critical exponent for a degenerate parabolic equation, J. Differential Equations, 207 (2004), 392-406. doi: 10.1016/j.jde.2004.08.024.

[10]

C. L. MuY. H. Li and Y. Wang, Life span and a new critical exponent for a quasilinear degenerate parabolic equation with slow decay initial values, Nonlinear Anal. Real World Appl., 11 (2010), 198-206. doi: 10.1016/j.nonrwa.2008.10.048.

[11]

C. L. MuR. Zeng and S. M. Zhou, Life span and a new critical exponent for a doubly degenerate parabolic equation with slow decay initial values, J. Math. Anal. Appl., 384 (2011), 181-191. doi: 10.1016/j.jmaa.2010.12.042.

[12] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. doi: 10.1007/978-1-4612-0873-0.
[13]

Y. W. Qi, Critical exponents of degenerate parabolic equations, Sci. China Ser. A, 38 (1995), 1153-1162.

[14]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40. doi: 10.1007/BF02761845.

[15]

C. X. YangF. Y. Ji and S. S. Zhou, The second critical exponent for a semilinear nonlocal parabolic equation, J. Math. Anal. Appl., 418 (2014), 231-237. doi: 10.1016/j.jmaa.2014.03.095.

[16]

J. N. Zhao, On the Cauchy problem and initial traces for the evolution P-Laplacian equations with strongly nonlinear sources, J. Differential Equations, 121 (1995), 329-383. doi: 10.1006/jdeq.1995.1132.

[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[3]

Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199

[4]

M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885

[5]

Michinori Ishiwata. Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent. Conference Publications, 2005, 2005 (Special) : 443-452. doi: 10.3934/proc.2005.2005.443

[6]

Meng-Rong Li. Estimates for the life-span of the solutions for some semilinear wave equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 417-432. doi: 10.3934/cpaa.2008.7.417

[7]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[8]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[9]

Gary Lieberman. Nonlocal problems for quasilinear parabolic equations in divergence form. Conference Publications, 2003, 2003 (Special) : 563-570. doi: 10.3934/proc.2003.2003.563

[10]

Hui-Ling Li, Heng-Ling Wang, Xiao-Liu Wang. A quasilinear parabolic problem with a source term and a nonlocal absorption. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1945-1956. doi: 10.3934/cpaa.2018092

[11]

Jingxue Yin, Chunhua Jin. Critical exponents and traveling wavefronts of a degenerate-singular parabolic equation in non-divergence form. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 213-227. doi: 10.3934/dcdsb.2010.13.213

[12]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[13]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[14]

Kei Matsuura, Mitsuharu Otani. Exponential attractors for a quasilinear parabolic equation. Conference Publications, 2007, 2007 (Special) : 713-720. doi: 10.3934/proc.2007.2007.713

[15]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[16]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[17]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[18]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[19]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[20]

Yavdat Il'yasov. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity. Conference Publications, 2011, 2011 (Special) : 698-706. doi: 10.3934/proc.2011.2011.698

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (7)
  • HTML views (13)
  • Cited by (0)

Other articles
by authors

[Back to Top]