2017, 16(5): 1741-1766. doi: 10.3934/cpaa.2017085

Semilinear nonlocal elliptic equations with critical and supercritical exponents

Department of Mathematics, Indian Institute of Science Education and Research, Dr. Homi Bhaba Road, Pune-411008, India

* Corresponding author : Mousomi Bhakta

Received  October 2016 Revised  April 2017 Published  May 2017

Fund Project: The first author is supported by the INSPIRE research grant DST/INSPIRE 04/2013/000152 and the second author is supported by the NBHM grant 2/39(12)/2014/RD-Ⅱ

We study the problem
$\left\{ \begin{align} &{{(-\Delta lta )}^{s}}u={{u}^{p}}-{{u}^{q}}\ \text{in}\ \text{ }{{\mathbb{R}}^{N}}, \\ &u\in {{{\dot{H}}}^{s}}({{\mathbb{R}}^{N}})\cap {{L}^{q+1}}({{\mathbb{R}}^{N}}), \\ &u>0\ \ \text{in}\ \ {{\mathbb{R}}^{N}}, \\ \end{align} \right.$
where
$s∈(0,1)$
is a fixed parameter,
$(-Δ)^s$
is the fractional Laplacian in
$\mathbb{R}^N$
,
$q>p≥q \frac{N+2s}{N-2s}$
and
$N>2s$
. For every
$s∈(0,1)$
, we establish regularity results of solutions of above equation (whenever solution exists) and we show that every solution is a classical solution. Next, we derive certain decay estimate of solutions and the gradient of solutions at infinity for all
$s∈(0,1)$
. Using those decay estimates, we prove Pohozaev type identity in ${{\mathbb{R}}^{N}}$ and we show that the above problem does not have any solution when
$p=\frac{N+2s}{N-2s}$
. We also discuss radial symmetry and decreasing property of the solution and prove that when
$p>\frac{N+2s}{N-2s}$
, the above problem admits a solution. Moreover, if we consider the above equation in a bounded domain with Dirichlet boundary condition, we prove that it admits a solution for every
$p≥q \frac{N+2s}{N-2s}$
and every solution is a classical solution.
Citation: Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085
References:
[1]

D. Applebaum, Lévy processes from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.

[2]

B. BarriosE. ColoradoA. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Diff. Eqns, 252 (2012), 6133-6162. doi: 10.1016/j.jde.2012.02.023.

[3]

M. Bhakta, D. Mukherjee and S. Santra, Profile of solutions for nonlocal equations with critical and supercritical nonlinearities, preprint, arXiv: 1612.01759.

[4]

M. Bhakta and S. Santra, On a singular equation with critical and supercritical exponents To appear in J. Differential Equations.

[5]

C. BrändleE. ColoradoA. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71. doi: 10.1017/S0308210511000175.

[6]

X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var. Partial Differential Equations, 49 (2014), 233-269. doi: 10.1007/s00526-012-0580-6.

[7]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[9]

R. Cont and P. Tankov, Financial Modelling with Jump Processes Vol. 2. CRC press, 2003. doi: 1-5848-8413-4.

[10]

J. Dávila, L. Dupaigne and J. Wei, On the fractional Lane-Emden equation, Trans. Amer. Math. Soc. .

[11]

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of ${{\mathbb{R}}^{N}}$, preprint, arXiv: 1506.01748.

[12]

E. FabesC. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. doi: 10.1080/03605308208820218.

[13]

M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227. doi: 10.1016/j.jfa.2012.06.018.

[14]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian Commun. Contemp. Math. , 16 (2014), 1350023, 24 pp. . doi: 10.1142/S0219199713500235.

[15]

N. Ghoussoub and S. Shakerian, Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud., 15 (2015), 527-555. doi: 10.1515/ans-2015-0302.

[16]

S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 2581-2615. doi: 10.3934/dcds.2014.34.2581.

[17]

T. JinY. Y. Li and J. Xiong, On a fractional Nirenberg problem, part Ⅰ: blow up analysis and compactness of solutions, J. Eur. Math. Soc.(JEMS), 16 (2014), 1111-1171. doi: 10.4171/JEMS/456.

[18]

M. K. KwongJ. B. McleodL. A. Peletier and W. C. Troy, On ground state solutions of $-\Delta u = u^p - u^q$, J. Differential Equations, 95 (1992), 218-239. doi: 10.1016/0022-0396(92)90030-Q.

[19]

F. Merle and L. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth, I. The radial case, Arch. Rational Mech. Anal., 112 (1990), 1-19. doi: 10.1007/BF00431720.

[20]

F. Merle and L. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth, Ⅱ. The non-radial case, J. Funct. Anal, 105 (1992), 1-41. doi: 10.1016/0022-1236(92)90070-Y.

[21]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. doi: 10.2307/1995882.

[22]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[23]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829. doi: 10.1007/s00526-013-0656-y.

[24]

Y. J. Park, Fractional Polya-Szego inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271.

[25]

X. Ros-Oton and J. Serra, Regularity theory for general stable operators, J. Differential Equations, 260 (2016), 8675-8715. doi: 10.1016/j.jde.2016.02.033.

[26]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl, 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[27]

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213 (2014), 587-628. doi: 10.1007/s00205-014-0740-2.

[28]

X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations, 40 (2015), 115-133. doi: 10.1080/03605302.2014.918144.

[29]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154.

[30]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc, 367 (2015), 67-102. doi: 10.1090/S0002-9947-2014-05884-4.

[31]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032.

[32]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983. doi: 10.3934/dcds.2011.31.975.

[33]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA No., 49 (2009), 33-44.

[34]

L. Vlahos, H. Isliker, K. Kominis and K. Hizonidis, Normal and anomalous diffusion: a tutorial, preprint, arXiv: 0805.0419.

show all references

References:
[1]

D. Applebaum, Lévy processes from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.

[2]

B. BarriosE. ColoradoA. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Diff. Eqns, 252 (2012), 6133-6162. doi: 10.1016/j.jde.2012.02.023.

[3]

M. Bhakta, D. Mukherjee and S. Santra, Profile of solutions for nonlocal equations with critical and supercritical nonlinearities, preprint, arXiv: 1612.01759.

[4]

M. Bhakta and S. Santra, On a singular equation with critical and supercritical exponents To appear in J. Differential Equations.

[5]

C. BrändleE. ColoradoA. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71. doi: 10.1017/S0308210511000175.

[6]

X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var. Partial Differential Equations, 49 (2014), 233-269. doi: 10.1007/s00526-012-0580-6.

[7]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[9]

R. Cont and P. Tankov, Financial Modelling with Jump Processes Vol. 2. CRC press, 2003. doi: 1-5848-8413-4.

[10]

J. Dávila, L. Dupaigne and J. Wei, On the fractional Lane-Emden equation, Trans. Amer. Math. Soc. .

[11]

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of ${{\mathbb{R}}^{N}}$, preprint, arXiv: 1506.01748.

[12]

E. FabesC. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. doi: 10.1080/03605308208820218.

[13]

M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227. doi: 10.1016/j.jfa.2012.06.018.

[14]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian Commun. Contemp. Math. , 16 (2014), 1350023, 24 pp. . doi: 10.1142/S0219199713500235.

[15]

N. Ghoussoub and S. Shakerian, Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud., 15 (2015), 527-555. doi: 10.1515/ans-2015-0302.

[16]

S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 2581-2615. doi: 10.3934/dcds.2014.34.2581.

[17]

T. JinY. Y. Li and J. Xiong, On a fractional Nirenberg problem, part Ⅰ: blow up analysis and compactness of solutions, J. Eur. Math. Soc.(JEMS), 16 (2014), 1111-1171. doi: 10.4171/JEMS/456.

[18]

M. K. KwongJ. B. McleodL. A. Peletier and W. C. Troy, On ground state solutions of $-\Delta u = u^p - u^q$, J. Differential Equations, 95 (1992), 218-239. doi: 10.1016/0022-0396(92)90030-Q.

[19]

F. Merle and L. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth, I. The radial case, Arch. Rational Mech. Anal., 112 (1990), 1-19. doi: 10.1007/BF00431720.

[20]

F. Merle and L. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth, Ⅱ. The non-radial case, J. Funct. Anal, 105 (1992), 1-41. doi: 10.1016/0022-1236(92)90070-Y.

[21]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. doi: 10.2307/1995882.

[22]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[23]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829. doi: 10.1007/s00526-013-0656-y.

[24]

Y. J. Park, Fractional Polya-Szego inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271.

[25]

X. Ros-Oton and J. Serra, Regularity theory for general stable operators, J. Differential Equations, 260 (2016), 8675-8715. doi: 10.1016/j.jde.2016.02.033.

[26]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl, 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[27]

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213 (2014), 587-628. doi: 10.1007/s00205-014-0740-2.

[28]

X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations, 40 (2015), 115-133. doi: 10.1080/03605302.2014.918144.

[29]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154.

[30]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc, 367 (2015), 67-102. doi: 10.1090/S0002-9947-2014-05884-4.

[31]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032.

[32]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983. doi: 10.3934/dcds.2011.31.975.

[33]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA No., 49 (2009), 33-44.

[34]

L. Vlahos, H. Isliker, K. Kominis and K. Hizonidis, Normal and anomalous diffusion: a tutorial, preprint, arXiv: 0805.0419.

[1]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[2]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[3]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[4]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[5]

A. M. Micheletti, Monica Musso, A. Pistoia. Super-position of spikes for a slightly super-critical elliptic equation in $R^N$. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 747-760. doi: 10.3934/dcds.2005.12.747

[6]

Antonio Capella. Solutions of a pure critical exponent problem involving the half-laplacian in annular-shaped domains. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1645-1662. doi: 10.3934/cpaa.2011.10.1645

[7]

Lingwei Ma, Zhong Bo Fang. A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1697-1706. doi: 10.3934/cpaa.2017081

[8]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[9]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[10]

Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445

[11]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Errata: Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2014, 3 (2) : 349-354. doi: 10.3934/eect.2014.3.349

[12]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2013, 2 (2) : 255-279. doi: 10.3934/eect.2013.2.255

[13]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[14]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent . Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[15]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[16]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[17]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[18]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[19]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[20]

Yavdat Il'yasov. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity. Conference Publications, 2011, 2011 (Special) : 698-706. doi: 10.3934/proc.2011.2011.698

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (2)
  • HTML views (3)
  • Cited by (1)

Other articles
by authors

[Back to Top]