We prove Strichartz estimates found after adding regularity in the spherical coordinates for Schrödinger-like equations. The obtained estimates are sharp up to endpoints. The proof relies on estimates involving spherical averages, which were obtained in [
Citation: |
Y. Cho , Z. Guo and S. Lee , A Sobolev estimate for the adjoint restriction operator, Math. Ann., 362 (2015) , 799-815. doi: 10.1007/s00208-014-1130-7. | |
Y. Cho and S. Lee , Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013) , 991-1020. doi: 10.1512/iumj.2013.62.4970. | |
Y. Cho , T. Ozawa and S. Xia , Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011) , 1121-1128. doi: 10.3934/cpaa.2011.10.1121. | |
D. Fang and C. Wang , Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011) , 181-205. doi: 10.1515/FORM.2011.009. | |
Z. Guo , Sharp spherically averaged Stichartz estimates for the Schrödinger equation, Nonlinearity, 29 (2016) , 1668-1686. doi: 10.1088/0951-7715/29/5/1668. | |
Z. Guo and Y. Wang , Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014) , 1-38. doi: 10.1007/s11854-014-0025-6. | |
J.-C. Jiang , C. Wang and X. Yu , Generalized and weighted Strichartz estimates, Commun. Pure Appl. Anal., 11 (2012) , 1723-1752. doi: 10.3934/cpaa.2012.11.1723. | |
M. Keel and T. Tao , Endpoint Strichartz estimates, Amer. J. Math., 120 (1998) , 955-980. | |
J. Sterbenz , Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not., () , 187-231. doi: 10.1155/IMRN.2005.187. | |
R. S. Strichartz , Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977) , 705-714. |