This paper is concerned with the existence and multiplicity of solutions to the following Kirchhoff type elliptic equations with critical nonlinearity:
$ \begin{cases} -(a+b \int_{Ω}|\nabla u|^{2}dx)Δ u=f(x, u)+μ|u|^{4}u &\; \; \mbox{in }Ω, \\ u=0 &\; \; \mbox{on }\partial Ω, \end{cases}$
where $Ω\subset\mathbb{R}^3$ is a bounded smooth domain, $μ$ is a positive parameter and $f:Ω×\mathbb{R}\to \mathbb{R}$ is a Carathéodory function satisfying some further conditions. Our approach is based on concentration-compactness principle and symmetry mountain pass theorem.
Citation: |
[1] |
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 41 (1973), 349-381.
![]() ![]() |
[2] |
C. O. Alves, F. J. S. A. Corra and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93.
doi: 10.1016/j.camwa.2005.01.008.![]() ![]() ![]() |
[3] |
C. O. Alves, F. J. S. A. Corra and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 23 (2010), 409-417.
doi: 10.7153/dea-02-25.![]() ![]() ![]() |
[4] |
H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
[5] |
G. M. Figueiredo and J. R. Santos Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Differential Integral Equations, 25 (2012), 853-868.
![]() ![]() |
[6] |
G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706-713.
doi: 10.1016/j.jmaa.2012.12.053.![]() ![]() ![]() |
[7] |
C. Heil,
A Basis Theory Primer Expanded edition, Applied and Numerical Harmonic Analysis, Birkhäuser, New York, 2011.
doi: 10.1007/978-0-8176-4687-5.![]() ![]() ![]() |
[8] |
X. M. He and W. M. Zou, Infinitely many positive solutions for Kirchhoff type problems, Nonlinear Anal., 70 (2009), 1407-1414.
doi: 10.1016/j.na.2008.02.021.![]() ![]() ![]() |
[9] |
G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
![]() |
[10] |
J. L. Lions, On some questions in boundary value problems of mathematical physics, in
Contemporary Development in Continuum Mechanics and Partial Differential Equations,
in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, New York, 1978, pp.
284-346.
![]() ![]() |
[11] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana, 1 (1985), 145-201.
doi: 10.4171/RMI/6.![]() ![]() ![]() |
[12] |
Z. Liang, F. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155-167.
doi: 10.1016/j.anihpc.2013.01.006.![]() ![]() ![]() |
[13] |
A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287.
doi: 10.1016/j.na.2008.02.011.![]() ![]() ![]() |
[14] |
D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 885-914.
doi: 10.1007/s00030-014-0271-4.![]() ![]() ![]() |
[15] |
K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006.![]() ![]() ![]() |
[16] |
E. A. B. Silva and M. S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 341-358.
doi: 10.1016/S0294-1449(02)00013-6.![]() ![]() ![]() |
[17] |
J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222.
doi: 10.1016/j.na.2010.09.061.![]() ![]() ![]() |
[18] |
Q. L. Xie, X. P. Wu and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786.
doi: 10.3934/cpaa.2013.12.2773.![]() ![]() ![]() |
[19] |
Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102.![]() ![]() ![]() |