This paper is concerned with the existence and multiplicity of solutions to the following Kirchhoff type elliptic equations with critical nonlinearity:
$ \begin{cases} -(a+b \int_{Ω}|\nabla u|^{2}dx)Δ u=f(x, u)+μ|u|^{4}u &\; \; \mbox{in }Ω, \\ u=0 &\; \; \mbox{on }\partial Ω, \end{cases}$
where $Ω\subset\mathbb{R}^3$ is a bounded smooth domain, $μ$ is a positive parameter and $f:Ω×\mathbb{R}\to \mathbb{R}$ is a Carathéodory function satisfying some further conditions. Our approach is based on concentration-compactness principle and symmetry mountain pass theorem.
Citation: |
[1] | A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 41 (1973), 349-381. |
[2] | C. O. Alves, F. J. S. A. Corra and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. doi: 10.1016/j.camwa.2005.01.008. |
[3] | C. O. Alves, F. J. S. A. Corra and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 23 (2010), 409-417. doi: 10.7153/dea-02-25. |
[4] | H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999. |
[5] | G. M. Figueiredo and J. R. Santos Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Differential Integral Equations, 25 (2012), 853-868. |
[6] | G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706-713. doi: 10.1016/j.jmaa.2012.12.053. |
[7] | C. Heil, A Basis Theory Primer Expanded edition, Applied and Numerical Harmonic Analysis, Birkhäuser, New York, 2011. doi: 10.1007/978-0-8176-4687-5. |
[8] | X. M. He and W. M. Zou, Infinitely many positive solutions for Kirchhoff type problems, Nonlinear Anal., 70 (2009), 1407-1414. doi: 10.1016/j.na.2008.02.021. |
[9] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[10] | J. L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Development in Continuum Mechanics and Partial Differential Equations, in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, New York, 1978, pp. 284-346. |
[11] | P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana, 1 (1985), 145-201. doi: 10.4171/RMI/6. |
[12] | Z. Liang, F. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155-167. doi: 10.1016/j.anihpc.2013.01.006. |
[13] | A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287. doi: 10.1016/j.na.2008.02.011. |
[14] | D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 885-914. doi: 10.1007/s00030-014-0271-4. |
[15] | K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255. doi: 10.1016/j.jde.2005.03.006. |
[16] | E. A. B. Silva and M. S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 341-358. doi: 10.1016/S0294-1449(02)00013-6. |
[17] | J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222. doi: 10.1016/j.na.2010.09.061. |
[18] | Q. L. Xie, X. P. Wu and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786. doi: 10.3934/cpaa.2013.12.2773. |
[19] | Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463. doi: 10.1016/j.jmaa.2005.06.102. |