We look for ground state solutions to the following nonlinear Schrödinger equation
$-Δ u + V(x)u = f(x,u)-Γ(x)|u|^{q-2}u\hbox{ on }\mathbb{R}^N,$
where $V=V_{per}+V_{loc}∈ L^{∞}(\mathbb{R}^N)$ is the sum of a periodic potential $V_{per}$ and a localized potential $V_{loc}$, $Γ∈ L^{∞}(\mathbb{R}^N)$ is periodic and $Γ(x)≥ 0$ for a.e. $x∈\mathbb{R}^N$ and $2≤q <2^*$. We assume that $\inf σ(-Δ+V)>0$, where $σ(-Δ+V)$ stands for the spectrum of $-Δ +V$ and $f$ has the subcritical growth but higher than $Γ(x)|u|^{q-2}u$, however the nonlinearity $f(x, u)-Γ(x)|u|^{q-2}u$ may change sign. Although a Nehari-type monotonicity condition for the nonlinearity is not satisfied, we investigate the existence of ground state solutions being minimizers on the Nehari manifold.
Citation: |
[1] | N. Ackermann, Uniform continuity and Brézis-Lieb type splitting for superposition operators in Sobolev space, Advances in Nonlinear Analysis, (2016). doi: 10.1515/anona-2016-0123. |
[2] | S. Alama and Y. Y. Li, On "multibump" bound states for certain semilinear elliptic equations, Indiana Univ. Math. J., 41 (1992), 983-1026. doi: 10.1512/iumj.1992.41.41052. |
[3] | A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7. |
[4] | T. Bartsch and J. Mederski, Ground and bound state solutions of semilinear time-harmonic Maxwell equations in a bounded domain, Arch. Rational Mech. Anal., 215 (2015), 283-306. doi: 10.1007/s00205-014-0778-1. |
[5] | T. Bartsch and J. Mederski, Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium, J. Funct. Anal., 272 (2017), 4304-4333. doi: 10.1016/j.jfa.2017.02.019. |
[6] | J. Belmonte-Beitia and D. Pelinovsky, Bifurcation of gap solitons in periodic potentials with a periodic sign-varying nonlinearity coefficient, Appl. Anal., 89 (2010), 1335-1350. doi: 10.1080/00036810903330538. |
[7] | V. Benci, C. R. Grisanti and A. M. Micheletti, Existence and non existence of the ground state solution for the nonlinear Schrödinger equations with $V(∞) = 0$, Topol. Methods in Nonlinear Anal., 26 (2005), 203-219. doi: 10.12775/TMNA.2005.031. |
[8] | A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, Chapman and Hall, 2006. |
[9] | A. V. Buryak, P. Di Trapani, D. V. Skryabin and S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physic to futuristic applications, Physics Reports, 370 (2002), 63-235. doi: 10.1016/S0370-1573(02)00196-5. |
[10] | D. Costa and H. Tehrani, Existence of positive solutions for a class of indefinite elliptic problems in $\mathbb{R}^N$, Cal. Var., 13, 159-189. doi: 10.1007/PL00009927. |
[11] | D. Costa and H. Tehrani, Existence and multiplicity results for a class of Schrödinger equations with indefinite nonlinearities, Adv. Differential Equations, 8 (2003), 1319-1340. |
[12] | V. Coti-Zelati and P. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1217-1269. doi: 10.1002/cpa.3160451002. |
[13] | W. Dörfler, A. Lechleiter, M. Plum, G. Schneider and C. Wieners, Photonic Crystals: Mathematical Analysis and Numerical Approximation, Springer, Basel, 2012. |
[14] | G. Figueiredo and H. R. Quoirin, Ground states of elliptic problems involving non homogeneous operators, Indiana Univ. Math. J., 65 (2016), 779-795. doi: 10.1512/iumj.2016.65.5828. |
[15] | Q. Guo and J. Mederski, Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials, J. Differential Equations, 260 (2016), 4180-4202. doi: 10.1016/j.jde.2015.11.006. |
[16] | L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on $\mathbb{R}^N$, Indiana Univ. Math. Journal, 54 (2005), 443-464. doi: 10.1512/iumj.2005.54.2502. |
[17] | P. Kuchment, The mathematics of photonic crystals, Mathematical modeling in optical science, Frontiers Appl. Math. , 22, SIAM, Philadelphia (2001), 207-272. |
[18] | Y. Li, Z.-Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 829-837. doi: 10.1016/j.anihpc.2006.01.003. |
[19] | P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part Ⅰ and Ⅱ, Ann. Inst. H. Poincaré, Anal. Non Liné are., 1 (1984), 109-145; and 223-283. |
[20] | F. Liu and J. Yang, Nontrivial solutions of Schrödinger equations with indefinite nonlinearities, J. Math. Anal. Appl., 334 (2007), 627-645. doi: 10.1016/j.jmaa.2006.12.054. |
[21] | S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9. doi: 10.1007/s00526-011-0447-2. |
[22] | J. Mederski, Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum, Topol. Methods Nonlinear Anal., 46 (2015), 755-771. doi: 10.12775/TMNA.2015.067. |
[23] | J. Mederski, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Comm. Partial Differential Equations, 41 (2016), 1426-1440. doi: 10.1080/03605302.2016.1209520. |
[24] | A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287. doi: 10.1007/s00032-005-0047-8. |
[25] | A. Pankov, On decay of solutions to nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2565-2570. doi: 10.1090/S0002-9939-08-09484-7. |
[26] | A. Pankov, Lecture Notes on Schrödinger Equations, Nova Publ., 2007. |
[27] | P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. doi: 10.1007/BF00946631. |
[28] | M. Reed and B. Simon, Methods of Modern Mathematical Physics, Analysis of Operators, Vol. IV, Academic Press, New York, 1978. |
[29] | B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526. doi: 10.1090/S0273-0979-1982-15041-8. |
[30] | R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals, Springer, 2003. |
[31] | M. Struwe, Variational Methods, Springer, 2008. |
[32] | A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822. doi: 10.1016/j.jfa.2009.09.013. |
[33] | A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of nonconvex analysis and applications, 597-632, Int. Press, Somerville, 2010. |
[34] | X. H. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Advanced Nonlinear Studies, 14 (2014), 361-373. doi: 10.1515/ans-2014-0208. |
[35] | M. Willem, Minimax Theorems, Birkhäuser Verlag, 1996. doi: 10.1007/978-1-4612-4146-1. |