• Previous Article
    Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating
  • CPAA Home
  • This Issue
  • Next Article
    The asymptotic limits of solutions to the Riemann problem for the scaled Leroux system
March 2018, 17(2): 375-389. doi: 10.3934/cpaa.2018021

Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction

1. 

Department of Mathematics, Korea University, Anam-dong, Seoul, 02841, South Korea

2. 

Department of Mathematics, Korea University, Sejong-ro Sejong, 30019, South Korea

Received  February 2017 Revised  August 2017 Published  March 2018

We consider a predator-prey system with a ratio-dependent functional response when a prey population is infected. First, we examine the global attractor and persistence properties of the time-dependent system. The existence of nonconstant positive steady-states are studied under Neumann boundary conditions in terms of the diffusion effect; namely, pattern formations, arising from diffusion-driven instability, are investigated. A comparison principle for the parabolic problem and the Leray-Schauder index theory are employed for analysis.

Citation: Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure & Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021
References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio dependence, J. Theor. Biol., 139 (1989), 311-326. doi: 10.1016/S0022-5193(89)80211-5.

[2]

R. ArditiL. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent models, American Naturalist, 138 (1991), 1287-1296.

[3]

R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73 (1992), 1544-1551. doi: 10.2307/1940007.

[4]

O. ArinoA. El. abdllaouiJ. Mikram and J. Chattopadhyay, Infection in prey population may act as a biological control in raito-dependent predator-prey models, Nonlinearity, 17 (2004), 1101-1116. doi: 10.1088/0951-7715/17/3/018.

[5]

E. Beltrami and T. Carroll, Modelling the role of viral disease in recurrent phytoplankton blooms, J. Math. Biol., 32 (1994), 857-863. doi: 10.1007/BF00168802.

[6]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222. doi: 10.1006/jmaa.2000.7343.

[7]

J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747-766. doi: 10.1016/S0362-546X(98)00126-6.

[8]

J. Chattopadhyay and S. Pal, Viral infection of phytoplankton-zooplankton system-a mathematical modeling, Ecol. Modelling, 151 (2002), 15-28. doi: 10.1016/S0304-3800(01)00415-X.

[9]

C. CosnerD. L. DeAngelisJ. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theoret. Population Biol., 56 (1999), 65-75. doi: 10.1006/tpbi.1999.1414.

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.

[11]

A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563. doi: 10.2307/1940008.

[12]

K. Hadeler and H. Freedman, Predator-prey population with parasite infection, J. Math. Biol., 27 (1989), 609-631. doi: 10.1007/BF00276947.

[13]

S. B. HsuT. W. Hwang and Y. Kuang, Rich dynamics of a ratio-dependent one-prey two-predators model, J. Math. Biol., 43 (2001), 377-396. doi: 10.1007/s002850100100.

[14]

S. B. HsuT. W. Hwang and Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Math. Biosci., 181 (2003), 55-83. doi: 10.1016/S0025-5564(02)00127-X.

[15]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389-406. doi: 10.1007/s002850050.

[16]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131. doi: 10.1006/jdeq.1996.0157.

[17]

C. S. LinW. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7.

[18]

Z. Lin and M. Pedersen, Stability in a diffusive food-chain model with Michaelis-Menten functional response, Nonlinear Anal., 57 (2004), 421-433. doi: 10.1016/j.na.2004.02.022.

[19]

L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Science, New York, 1974.

[20]

P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 33 (2003), 919-942. doi: 10.1017/S0308210500002742.

[21]

P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200 (2004), 245-273. doi: 10.1016/j.jde.2004.01.004.

[22]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[23]

C. V. Pao, Quasisolutions and global attractor of reaction-diffusion systems, Nonlinear Anal., 26 (1996), 1889-1903. doi: 10.1016/0362-546X(95)00058-4.

[24]

K. Ryu and I. Ahn, Positive solutions to ratio-dependent predator-prey interacting systems, J. Differential Equations, 218 (2005), 117-135. doi: 10.1016/j.jde.2005.06.020.

[25]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, $2^{nd}$ edition, Springer-Verlag, New York, 1994.

[26]

Y. Xiao and L. Chen, A ratio-dependent predator-prey model with disease in the prey, Appl. Maths. Comp., 131 (2002), 397-414. doi: 10.1016/S0096-3003(01)00156-4.

[27]

Y. Xiao and L. Chen, Analysis of a three species eco-epidemiological model, J. Math. Anal. Appl., 258 (2001), 733-754. doi: 10.1006/jmaa.2001.7514.

show all references

References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio dependence, J. Theor. Biol., 139 (1989), 311-326. doi: 10.1016/S0022-5193(89)80211-5.

[2]

R. ArditiL. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent models, American Naturalist, 138 (1991), 1287-1296.

[3]

R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73 (1992), 1544-1551. doi: 10.2307/1940007.

[4]

O. ArinoA. El. abdllaouiJ. Mikram and J. Chattopadhyay, Infection in prey population may act as a biological control in raito-dependent predator-prey models, Nonlinearity, 17 (2004), 1101-1116. doi: 10.1088/0951-7715/17/3/018.

[5]

E. Beltrami and T. Carroll, Modelling the role of viral disease in recurrent phytoplankton blooms, J. Math. Biol., 32 (1994), 857-863. doi: 10.1007/BF00168802.

[6]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222. doi: 10.1006/jmaa.2000.7343.

[7]

J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747-766. doi: 10.1016/S0362-546X(98)00126-6.

[8]

J. Chattopadhyay and S. Pal, Viral infection of phytoplankton-zooplankton system-a mathematical modeling, Ecol. Modelling, 151 (2002), 15-28. doi: 10.1016/S0304-3800(01)00415-X.

[9]

C. CosnerD. L. DeAngelisJ. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theoret. Population Biol., 56 (1999), 65-75. doi: 10.1006/tpbi.1999.1414.

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.

[11]

A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563. doi: 10.2307/1940008.

[12]

K. Hadeler and H. Freedman, Predator-prey population with parasite infection, J. Math. Biol., 27 (1989), 609-631. doi: 10.1007/BF00276947.

[13]

S. B. HsuT. W. Hwang and Y. Kuang, Rich dynamics of a ratio-dependent one-prey two-predators model, J. Math. Biol., 43 (2001), 377-396. doi: 10.1007/s002850100100.

[14]

S. B. HsuT. W. Hwang and Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Math. Biosci., 181 (2003), 55-83. doi: 10.1016/S0025-5564(02)00127-X.

[15]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389-406. doi: 10.1007/s002850050.

[16]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131. doi: 10.1006/jdeq.1996.0157.

[17]

C. S. LinW. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7.

[18]

Z. Lin and M. Pedersen, Stability in a diffusive food-chain model with Michaelis-Menten functional response, Nonlinear Anal., 57 (2004), 421-433. doi: 10.1016/j.na.2004.02.022.

[19]

L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Science, New York, 1974.

[20]

P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 33 (2003), 919-942. doi: 10.1017/S0308210500002742.

[21]

P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200 (2004), 245-273. doi: 10.1016/j.jde.2004.01.004.

[22]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[23]

C. V. Pao, Quasisolutions and global attractor of reaction-diffusion systems, Nonlinear Anal., 26 (1996), 1889-1903. doi: 10.1016/0362-546X(95)00058-4.

[24]

K. Ryu and I. Ahn, Positive solutions to ratio-dependent predator-prey interacting systems, J. Differential Equations, 218 (2005), 117-135. doi: 10.1016/j.jde.2005.06.020.

[25]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, $2^{nd}$ edition, Springer-Verlag, New York, 1994.

[26]

Y. Xiao and L. Chen, A ratio-dependent predator-prey model with disease in the prey, Appl. Maths. Comp., 131 (2002), 397-414. doi: 10.1016/S0096-3003(01)00156-4.

[27]

Y. Xiao and L. Chen, Analysis of a three species eco-epidemiological model, J. Math. Anal. Appl., 258 (2001), 733-754. doi: 10.1006/jmaa.2001.7514.

[1]

Jing Li, Zhen Jin, Gui-Quan Sun, Li-Peng Song. Pattern dynamics of a delayed eco-epidemiological model with disease in the predator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1025-1042. doi: 10.3934/dcdss.2017054

[2]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[3]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[4]

Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang. Positive steady states of a density-dependent predator-prey model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3087-3107. doi: 10.3934/dcdsb.2017209

[5]

Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035

[6]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[7]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[8]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[9]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[10]

Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082

[11]

Andrei Korobeinikov. Global properties of a general predator-prey model with non-symmetric attack and consumption rate. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1095-1103. doi: 10.3934/dcdsb.2010.14.1095

[12]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[13]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[14]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[15]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167

[16]

H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705

[17]

Fasma Diele, Carmela Marangi. Positive symplectic integrators for predator-prey dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2661-2678. doi: 10.3934/dcdsb.2017185

[18]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[19]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[20]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (86)
  • HTML views (230)
  • Cited by (0)

Other articles
by authors

[Back to Top]